Jaaa, er lebt noch!

Nein, gemeint ist hier nicht der Holzmichl, sondern mein erster Staubsaugerroboter. Am 7. August 2009 habe ich meinen Roomba 580 gekauft. Damit war ich schneller als Arne, was auf botzeit gut dokumentiert ist, und er tut heute noch seinen Dienst. Wie in jeder Beziehung hat auch meine Geschichte mit Roomba Höhen und Tiefen erfahren.

Der gute alte 580
Wie man sieht, hat dieser 580 so einige Duelle mit meinen Fußleisten und Möbeln ausgefochten.

Anfängliche Wutanfälle

Bis sich der neue Roboter an seine neue Umgebung gewöhnt hat, dauert es eine Weile. Das kann dazu führen, dass ein nicht kompatibler Teppich unweigerlich die Wohngemeinschaft verlässt, nachdem er von Roomba spontan zerpflückt worden ist. Einen ähnlichen Fall hat Arne ja beispielsweise hier dokumentiert. Aber diese Phase ging bei uns schnell vorbei und es kehrte bald Harmonie ein.

Der Akku – Plötzliche Appetitlosigkeit

Etwa alle anderthalb Jahre verliert der kleine seinen Appetit und wirkt etwas launisch und kraftlos. Das heißt, Roomba lädt nicht mehr richtig und saugt auch nicht mehr die ganze Wohnung. Das ist dann für mich das Zeichen, wieder einmal einen neuen Akku zu kaufen. Den gibt es bei einem wohlbekannten börsennotierten Onlineversandhändler mit einer breit gefächerten Produktpalette. Diverse Anbieter verkaufen Nachbauten um etwa 30 €. Originale gibt es für etwas mehr Geld. Bisher habe ich noch nie ein Problem mit den Nachbauten gehabt.

„Fehler 9“ – Das verflixte siebte Jahr

Unsere schwerste Krise hatten wir — ganz klassisch — im verflixten siebten Jahr. Urplötzlich drehte Roomba buchstäblich am Rad und bewegte sich nur noch im Kreis. Es stellte sich heraus, dass es an einer altersschwachen Infrarot-Diode und / oder einem altersschwachen Fototransistor lag. Die Diode und der Transistor bilden das Herzstück der Bumper. Sie lassen Roomba erkennen, dass er gegen ein Hindernis gefahren ist. Die besagte Symptomatik ist auch als „Fehler 9“ bekannt. Es kann mit etwas handwerklichem Geschick, etwas Zeit, einem Schraubendreher und einem heißen Lötkolben für unter 5 € behoben werden. Also habe ich mir eine Flasche Bier aufgemacht und meinen Roomba damals nach der Reparaturanleitung von Andy Dunkel (vielen Dank!) kuriert:

Roomba Fehler 9–Reparaturanleitung

Wer schon einmal bei einem Neuwagen nach ersten paar tausend Kilometern ein Abblendlicht gewechselt hat, der ahnt was jetzt kommt. Richtig, weniger als ein Jahr später hat Roomba einen Rückfall. Die gleiche Symptomatik, mit anderer Drehrichtung… Als ich den kleinen aufgeschraubt und bis auf seine intimsten Platinen zerlegt hatte, hätte ich gleich auch den anderen Bumper reparieren sollen. Glücklicherweise hatte ich ein paar Dioden und Fototransistoren extra gekauft. Bier war auch noch im Kühlschrank…

Hat er einen anderen?

Seit dem läuft es eigentlich gut in unserer Beziehung. Wenngleich ich zugeben muss, hin und wieder mal mit meinen Gedanken „bei einem anderen“ zu sein. Beim HiWi Job im Studium durfte ich an Sparse Visual SLAM Algorithmen mit Omnidirektionalen Kameras mitentwickeln. Die habe ich dann auf einem Pioneer Roboter erprobt. Dann habe ich bei einem großen Technologieunternehmen in der Entwicklungsabteilung genau daran weitergearbeitet. Obwohl ich heute in einem etwas anderen Teilgebiet der Robotik unterwegs bin, könnte ich mir einen neuen Staubsaugerroboter kaufen, der das alles mitbringt. Das juckt mich natürlich schon…

Dennoch bleibe ich meinem alten Roboter treu. So lange er noch tut, bleibt er der einzige Staubsaugerroboter in meinem Leben.

Reparier‘ Deinen Staubsaugerroboter

Vielleicht eine gute Beschäftigung an einem langweiligen Abend in Covid-19-Isolation? Wenn Du noch einen alten Roboter rumstehen hast, versuche ihm doch wieder Leben einzuhauchen.

Und wenn er nicht gestorben ist, dann saugt er die Wohnung auch morgen noch…

In diesem Sinne: Frohe Ostern!

Es waren einmal …

… drei Wissenschaftler aus der Abteilung Advanced Robotics des IIT in Genua. Sie saßen des Morgens beim Kaffee und entwickelten diese Idee. Die Idee von einer Weihnachtsgeschichte, in der die am IIT entwickelten und eingesetzten Roboter die Protagonisten darstellen:

Youtube-Video: A Robot Christmas Story

Unter den Kollegen fand die Idee großen Anklang. Schnell wurden Meetings angestzt, um die Geschichte auszuarbeiten und zu verfeineren. Die Kollegen von der Medienabteilung wurden hinzugezogen um technische Details zu klären. Schließlich wurden Requisiten gekauft und Zeitslots für die Roboter reserviert, so dass wir die Dreharbeiten parallel oder gar im Anschluss zum ganz normalen Projekt- und Forschungsalltag durchführen konnten.

Wie Ihr im Making of sehen könnt, hatten wir dabei viel Spaß, auch wenn nicht immer alles so auf Anhieb geklappt hat:

Youtube-Video: The making of...

In diesem Sinne allen Lesern frohe Feiertage und einen guten Start ins neue Jahr!

DRC Wettkampftage

(this article is also available in English)

Eine Woche ist es her, seit der DARPA Robotics Challenge (DRC). Noch am Abend des zweiten Wettkampftages haben wir Walkman wieder verpackt und auf den Heimweg geschickt. Anschließend hatten wir Zeit, Schlaf nachzuholen, ein wenig Californien zu erkunden und die DRC-Woche Revue passieren zu lassen.

In der Tat, es ist nicht bei den zwei gestürzten Robotern während des Testlaufs geblieben. Am ersten Wettkampftag sind nahezu alle Zweibeiner früher oder später gestürzt. Jemand hat sich die Mühe gemacht einige der Stürze in einem Video zusammenzufassen:

Stürzende Roboter, via IEEE Spectrum

Etwa ab Sekunde 00:19 ist Walkman zu sehen. Die Aufnahme zeigt unseren ersten Lauf in der zweiten Gruppe am Freitag Morgen. Innerhalb von acht Minuten und zwölf Sekunden hatte Walkman den Polaris Ranger von der Startlinie durch den Parcours zu Eingangstür der simulierten Industrieanlage gefahren und damit den ersten Punkt geholt. Wie im nachfolgenden Video ab Sekunde 50 zu sehen, wurde Walkman dabei kräftig angefeuert.

Walkman’s erster Lauf, angefeuert von seinem Team

Zu diesem Zeitpunkt hatte Walkman zunächst die beiden Atlas Teams, die offenbar technische Schwierigkeiten hatten, weit hinter sich gelassen. Doch dann standen plötzlich für mehrere Minuten auf allen vier Bahnen sämtliche Roboter still. Offenbar gab es bei allen Teams Probleme mit der Kommunikation zwischen den Piloten und dem Roboter. Die Verzögerungszeit auf allen Bahnen wurde daher an die Wettkampfzeit angehängt. Allerdings zehrten die Roboter während dieser Zeitspanne weiterhin von ihren Batterien…

Als es weiterging, öffnete Walkman problemlos die Tür und setzte an, die diese zu durchschreiten. Wir hatten dies in unserer Garage mehrfach geübt. Aufgrund der sehr breiten Schultern des Roboters (ca. 80 cm), ist das Durchschreiten der Tür nicht ganz einfach. Die Strategie bestand also in einer Drehung des Roboters auf der Stelle um 90°. Anschließend passierte Walkman die Tür mit Seitwärtsschritten. Leider brach Walkman unmittelbar nach dem Öffnen der Tür plötzlich einfach zusammen (siehe Video). Glücklicher Weise hat sich Walkman bei diesem Zusammenbruch quasi abgerollt, sodass nichts passiert ist. In der Tat ist von diesem Sturz kaum ein Kratzer zu sehen.

Die Ursache für den Zusammenbruch ist nicht klar. Die Batteriekapazität lag noch bei 80 %. Faszinierender Weise stürzte exakt zur gleichen Zeit auf der Roboter auf der Nachbarbahn. Bei einem Sturz schaltet das Team den Roboter per Funk über einen sogenannten E-Stop Schalter aus, um weitere Schäden zu vermeiden und eine sichere Annäherung an den Roboter zu ermöglichen. Da ein Übersprechen zwischen den E-Stops beider Teams nicht ausgeschlossen werden konnte, gewährte uns die Wettkampfleitung freundlicher Weise eine Wiederholung des Laufs ab dem Zeitpunkt der Kommunikationspanne. Das bedeutet, wir durften am Abend des gleichen Tages noch einen Versuch unternehmen. Der Versuch startete an der Stelle vor der Tür mit der uns am Morgen an dieser Stelle noch verbliebenen Zeit. Dieses mal gelang es die Tür zu durchschreiten. Leider geriet Walkman unmittelbar auf der anderen Seite der Tür ins Straucheln, fiel mit lautem Scheppern auf die Seite und drehte sich anschließend auf die Frontseite. Er kam auf den Knien und dem Schutzkäfig am Kopf jenseits der Türlinie zum liegen. Damit hatten wir dann immerhin unseren zweiten Punkt geholt.

Die am Roboter angebrachten Polster haben auch bei diesem Sturz schlimmeres Verhindert. Eine Schraube zur Befestigung des Ellenbogen Polsters war deutlich verbogen. Diese Schraube hatte beim Aufprall ein Loch im Asphalt der Wettkampfbahn hinterlassen. Darüber hinaus war dem Roboter scheinbar nichts ernstes passiert. Dennoch wurden einige Rekalibrationen erforderlich, die wir dann bis in die Nacht hinein durchführen mussten.

Am nächsten Morgen ging es dann nach einem kurzen Testlauf in der Garage zum zweiten Wettkampflauf. Beim Fahren des Polaris Rangers konnte Walkman die Zeit vom Vortag nahezu halbieren. Vor der Tür begannen dann leider wieder die Schwierigkeiten. Zuerst machte sich ein Rattern während der Bewegung des linken Ellenbogengelenks bemerkbar. Während des Drehens auf der Stelle vor der Tür berührte Walkman den Türrahmen und geriet zunächst gefährlich ins Wanken. Wenige Minuten später mussten wir letztendlich Walkmans letzten Sturz des Wettkampfs mitansehen… Dieses Mal hat sich Walkman wohl das Fußgelenk verknackst…

Schade ist, dass wir nach so kurzer Zeit und einem so guten Start in den zweiten Wettkampftag dann doch so früh abbrechen mussten. Dennoch herrscht Einigkeit im Team und auch so manch anderer bekannter Robotiker in Fairplex hat uns das bestätigt: angesichts der kurzen Entwicklungszeit haben wir einen für den Wettkampf ernstzunehmenden Roboter präsentiert, eine gute Leistung gezeigt und sind damit doch sehr weit gekommen. Wir haben zwei Punkte geholt und haben so mit dem 17. Platz immerhin sechs weitere Teams hinter uns gelassen. Das Technologiekonzept scheint also prinzipiell zu stimmen, am Reifegrad der Technologie dürfen wir noch arbeiten. Da der Roboter von der ersten Schraube bis zum letzten Softwarebit selbst entwickelt worden ist, können wir alle gelernten Lektionen auch unmittelbar umsetzten.

Als Fazit war die Woche für jeden vons eine großartige Erfahrung und anders als bei vielen der anderen Teams stellt die Teilnahme an dem Wettkampf nicht das Projektfinale dar. Für das Team Walkman war dies nur ein früher Meilenstein nach einem Drittel der Projektzeit.

Hier noch ein paar Eindrücke von unseren Vorbereitungen in der Garage:

Team Walkman bei den Vorbereitungen

sowie den Wettkampftagen:

Team Walkman beim Wettkampf

Und da es offensichtlich noch Bedarf zur Nachbesserung in Sachen Balance gibt, begann Team Walkman sogleich mit einem passenden Aufbauseminar… am Strand von San Diego

/images/blog/surfing.jpg
Nachhilfe in Sachen Balance am Strand von San Diego

Das war’s. Das Team Walkman dankt allen, die die Daumen gedrückt und uns angefeuert haben!

/images/blog/007087e517b.jpg
via newscientist.com

DARPA Robotics Challenge – Bald geht es los

Heute durften alle Teams auf dem Wett­kampf­gelände einen voll­ständigen Testlauf durchführen. Nach einigen Hardware-Problemen wie einem kaputten Magnet­encoder im rechten Knie und einem defekten Lade­wider­stand gab es bei dem heutigen Test­lauf auf dem Wett­kampf­parcours schließlich noch Probleme mit einem launigen On-board Switch…

/images/blog/gelaende.JPG
Der Wettkampfparcours. Insgesamt finden vier Läufe gleichzeitig statt.

Immerhin besteht die Chance, dass Team Walkman damit den Vorrat an Pech ver­braucht hat und morgen ein glück­liches DRC Finale bevorsteht!

/images/blog/P1100567.JPG
Ein hübsch rundes Loch ist das da geworden.
/images/blog/P1100587.JPG
Der Versuch eine Tür zu öffnen.

So wie es aussieht haben bei dem heutigen Test­lauf insgesamt 12 von 25 Teams nicht einen einzigen Punkt geholt. Bei manchen lief es einfach nicht gut, andere Teams woll­ten vor dem eigent­lichen Wett­kampf wohl nicht zu viel riskieren. Zwei Teams sind bereits aus­ge­schieden. Zwei Roboter sind heute während des Test­laufs gestürzt und es werden wohl nicht die letzten gewesen sein… Es wird also spannend!

Ein paar Eindrücke von den DRC Finals

So, nach nunmehr drei Tagen am Aus­tragungs­ort der DARPA Robotics Chal­lenge in Pomona mit viel zu viel Fastfood und wenig Schlaf nehme ich mir die Zeit ein paar Eindrücke über botzeit zu teilen.

Zum Hintergrund des Walkman Projekts

Der Roboter ist 1.85 groß und wiegt etwa 120 kg. Der gesamte Roboter wurde in nicht mehr als 10 Monaten entwickelt, gefertigt und erst­malig in Betrieb genommen. Als ich im Januar in Genua ankam, steckten die extern gefer­tig­ten Teile noch in der Zoll­ab­fer­tigung fest…

Als schließlich alle Teile im Institut ange­kom­men waren, wurde der Roboter binnen zwei Wochen zusammen­ge­baut und in Betrieb genommen. Zu diesem Zeit­punkt blieb uns für die Fertig­stel­lung der Quali­fi­ka­tions­videos für die DRC Finals dann noch ein knapper Monat Zeit.

Auch nach der Quali­fi­ka­tion blieb nicht viel Zeit zum Durch­atmen. Während der Qualifika­tions­experi­men­te hatten sich ein paar Tücken sowohl in der Hardware, wie auch in der Soft­ware offenbart. Alles andere wäre vermut­lich auch sehr über­raschend gewesen…

Am vergangenen Samstag sind wir schließlich hier in Pomona nahe Los Angeles ange­kom­men und berei­ten uns seither auf den Wett­kampf vor.

/images/blog/P1100270.JPG
Ein Blick in die Garage von Team Walkman

Eine Art Tagebuch

Sonntag: Registrierung, Begrüßung und Instruktionen

Der Sonntag Vormittag dient im Wesent­lichen der Orientie­rung hier vor Ort. Es ist das einzige Zeit­fenster, in dem wir einen kurzen Blick auf die Gegend um Los Angeles erhaschen und einige wenige Sehens­würdig­keiten besuchen können. Nach der Registrie­rung am Nach­mit­tag findet dann die offizielle Be­grüßung und Auftakt­ver­anstal­tung statt. Ein kurzer Überblick über die Daten und Fakten zum Event: es sind etwa 600 Team-Mitglieder angereist, betreut wird die Veranstal­tung von 300 frei­wil­ligen DARPA-Mitarbei­tern. Zahlreiche inter­nationa­le Pres­se­vertre­ter haben sich ange­kündigt. Darunter unter anderem: ARD, BBC News, Daily Planet, IEEE Spectrum, MIT Technology Review, NBC News, Playboy.com, Spiegel Online, TEDx, ZDF.

Montag: der Einzug in die Team Garage

Wir bekommen ab 08:00 Uhr Zugang zu unserer Team Garage. Das ist der Ort, wo wir unsere Rechner, unsere Werk­statt, den Roboter und eine kleine Trainings­umgebung aufbauen.

Wir verbringen den ganzen Tag weitestgehend mit dem Einzug, dem Aufbau der Arbeits­plätze und ausgiebigen Tests des Roboters. Die beste Nachricht des Tages:
Walkman ist gesund und munter angekommen. Der Roboter funktio­niert einwand­frei. Auch das restliche Equipment hat den Transport unbeschadet überstanden.

Für die meisten endet dieser erste Tag etwa um Mit­ter­nacht mit dem Rückweg zum Hotel.

Dienstag: Modultest

Um 09:00 Uhr geht es für mich weiter. An diesem Tag steht Loko­motion im Forder­­grund. Wir sind unsicher, wie Walkman mit dem un­ebenen Wett­kampf­gelände und vorhandenen Stei­gungen zurecht kommen wird. Ent­sprechend werden nach dem Transport einige Modell­para­me­ter überprüft und re­kali­briert sowie Regler­einstel­lungen verfeinert.

Am Nach­mit­tag können wir erstmalig den Roboter in eines der von der DARPA für den Wett­kampf zur Verfügung gestellten Autos setzen und unsere Fahrzeug­modi­fi­ka­tionen für diese Aufgabe testen.

/images/blog/IMG_20150602_171306.jpg
Walkman im Auto

Anschließend haben sowohl Roboter als auchTeam einen offi­ziel­len Foto­termin.

http://www.theroboticschallenge.org/sites/default/files/20150602_SUN_WALK-MAN_bleachers_web.jpg
Team Walkman (theroboticschallenge.org)

Am Abend geht es weiter mit Lokomotion. Eine Holz­platte und ein paar Balken dienen dienen als Test­platt­form. Wir testen das Stehen, Laufen und Drehen auf der Stelle auf der hölzer­nen Ebene mit bis zu 8° Grad Neigung. Der Roboter meistert die Tests und wir beenden unsere Arbeit sehr zufrie­den um 03:00 Uhr am Morgen. Wir werden von den Jungs abgelöst, die nun das Auto­fahren testen werden. Die Kollegen vom IHMC haben uns freund­licher­weise zu diesem Zweck bis 11:00 Uhr ihren Polaris Ranger überlassen. Mille mille grazie dafür!

Mittwoch: Manipulation Day Öffnen und Durch­schreiten der Tür, Ventil-Aufgabe

Heute steht Manipulation auf der Tages­ordnung. Im speziellen das Öffnen und Durch­schreiten einer Tür, sowie das Drehen eines Industrie­ventils. Bei den Arbeiten bereitet uns das linke Knie­gelenk Probleme. Einer der Magnet­encoder versagt den Dienst. Am Morgen war bereits ein Fehler in der Leistungs­elektronik auf­ge­tre­ten. Mir gibt der Ausfall die Zeit, diese Zeilen zu schreiben, während unsere Techniker daran arbeiten, nicht nur das defekte Teil zu ersetzen, sondern auch die Ursache für den Aus­fall festzustellen…

Die Atmosphäre in der Garage:

Insgesamt ist die Atmosphäre sehr angenehm. Insbesondere das Mit­einander mit den übrigen Teams empfinde ich als sehr angenehm. Die Halle hier ist voll von Menschen, die mit großer Be­geisterung an ihren Robotern arbeiten. Bis auf ein einzi­ges Team hängt in jeder Garage ein grünes Schild, dass die Aufnahme von Fotos und Videos ausdrücklich erlaubt. Die Wissen­schaftler und Techniker laufen von Garage zu Garage und informieren sich wiss­begie­rig über die Kon­struk­tion, Hard- und Software der anderen Teams. Die eigenen Erfahrungen werden meist gerne geteilt und wie es aussieht, knüpfen manchmal nicht nur Menschen, sondern auch Roboter neue Kontakte:

/images/blog/IMG_20150602_185312.jpg
Atlas und Walkman verstehen sich.

Insgesamt gehen alle Teams sehr hilfs­bereit mitein­ander um. Man leiht sich gegen­seitig Ersatz­teile und Werk­zeug. Gegen Abend zeigt sich dann, welche Teams schon lange dabei sind und ent­sprechend eine aus­ge­reifte Hard- und Software vor­weisen können. Diese Teams verlassen ihre Garage am Abend und genießen ein wenig Frei­zeit. Andere Teams, die noch jung im Rennen sind und meist ihre Roboter voll­ständig selbst gebaut haben, bleiben bis in die Nacht hinein. Viele arbeiten im Schicht­betrieb – so wie wir.

Turniamo a’lavoro!

Andiamo al DRC

Ich erinnere mich gut noch an die ersten DARPA Grand Challenges in 2004 und 2007. Damals habe ich noch den alten VHS Recorder an den Rechner angeschlossen, um den Internet-Stream aufzunehmen. Ich glaube Arne hat immernoch irgendwo meine Aufnahmen von der Urban Challenge? 😉

In der kommenden Woche finden die Finals der aktuellen DARPA Robotics Challenge (DRC) statt. Dabei geht es darum, dass ein ferngesteuerter Roboter in einem simulierten Katastrophenszenario eine Mission aus mehreren Teilaufgaben bewältigen muss. Zu den Aufgaben zählt das Fahren eines Autos, das öffnen und durchschreiten einer Tür, das Herstellen eines Durchbruchs in einer Gipskartonwand, das öffnen eines Industrieventils und einiges mehr.

Eine genauere und anschauliche Beschreibung findet ihr auf Sciencenews.org.

Insgesamt treten am 05. und 06. Juni 25 Teams in der Challenge an. Einen Überblick über die Teams und ihre Roboter gibt’s auf der offiziellen DRC Webseite.

Ich selbst darf als Mitglied des Teams Walkman vom IIT (Istituto Italiano di Tecnologia) dieses Mal alles aus nächster Nähe miterleben.

Unser Roboter ist dieses wunderschöne Stück Technik hier, dessen Entwicklung vor knapp einem Jahr im Rahmen des gleichnamigen EU-Projekts begann:

Walkman

Heute sitze ich am Flughafen und blicke auf einige sehr arbeitsreiche Wochen und Wochenenden seit meiner Ankunft am IIT zurück. In den kommenden Tagen packen wir den Roboter in Pomona aus und beginnen mit den letzten Vorbereitungen und Tests. Auch das werden wohl sehr intensive aber spannende Tage mit unserem Team sowie auch zusammen mit all den anderen Teams. Ich hoffe ein paar Eindrücke an dieser Stelle mit Botzeit teilen zu können.

Va bene! Andiamo al DRC!

Alles Fake – Ein trauriger Monat für die Robotik

In der vergangenen Woche fand das European Robotics Forum statt. Dabei handelt es sich um eine Networking-Veranstaltung, bei denen aktuelle und zukünftige Trends in der europäischen Forschungslandschaft diskutiert werden. Einem Blick ins Programm der Veranstaltung verrät bereits einen guten Überblick, was die deutsche Robotik Gemeinde umtreibt. Ein wesentlicher Aspekt ist es, die Verknüpfung zwischen Wahrnehmung und Handlung in Robotern zu verbessern. Es geht darum, einen Roboter in die Lage zu versetzen, komplexe Bewegungen und Manipulationsaufgaben, die einen hohen Grad an Geschick erfordern, selbstständig oder durch Demonstration zu erlernen und zu adaptieren.

In meinen Augen ist das ein hochspannendes Thema, in dessen Kontext ich vor etwas längerer Zeit bereits auf nachfolgende beeindruckende Videos aufmerksam geworden bin:

Das Video zeigt, wie ein Mensch einem Roboter das Tischtennis Spielen demonstriert. Anschließend erprobt und verbessert der Roboter selbstständig seine Fähigkeiten. Schließlich, spielt der Roboter Tischtennis mit einem Menschen.

Der Tischtennis Demonstrator ist meiner Ansicht nach sehr gut geeignet um Forschungsergebnisse dieser Art darzustellen. Es gibt viele Freiheitsgrade. Die Dynamik der Aufgabe ist hoch und fordernd. Eine Tischtennisplatte hat vertretbare Abmessungen, sodass sich der Demonstrator in einem Labor gut realisieren lässt. Das Spiel mit einem echten Menschen ist nicht planbar. Es kommt zu unvorhersehbaren Ballwechseln. Daher demonstriert das Experiment prinzipell sehr gut die Generalisierungsfähigkeit aber auch die Grenzen entwickelter Algorithmen.

Hohe Erwartungen

Im Februar kündigte der Roboterhersteller KUKA mit nachfolgendem Video ein Tischtennis Duell zwischen einem KUKA Roboter und dem Tischtennisprofi Timo Boll an.

Vor dem Hintergrund der zuvor dargestellten Forschungsarbeiten war ich natürlich freudig gespannt auf das Event. Und damit war ich nicht allein. Aus den Kommentaren:

  • „Hmm…ein Fake wird es nicht sein, glaube aber nicht das der Bot den Hauch einer Chance gegen Boll hat, sobald der mit Topspin angreift. […]“
  • „Fantastic. Cant wait to see this in action…“
  • „Well…never thought I’d be so hyped for a ping pong match!“

Auf IEEE Spectrum News schreibt Evan Ackermann: „Wow, Kuka wouldn’t have set this whole thing up unless it was actually going to be a good match! Maybe we’ll see some amazing feats of high speed robot arms, vision systems, and motion tracking!“

Ernüchterung

Die geschürte Erwartung bestand in einem tatsächlichen „Duell“ im Sinne eines echten Spiels zwischen Mensch und Roboter. In meinem durchaus robotisch geprägten Umfeld wurden rege Diskussionen geführt, wie das hypothetische Match ausgehen würde. Ebenso wurden Vermutungen über technische Realisierungen diskutiert. Die oben angesprochenen Forschungsergebnisse haben die prinzipielle Machbarkeit ja bereits vor einiger Zeit demonstriert. Bis hier her: schöne Arbeit seitens des Marketings. Das mit Spannung erwartete Duell war in aller Munde. Am 10.03. erschien dann das ernüchternde Video:

Für sich genommen ein nettes Werbe-Video. Aber nicht das angekündigte Spiel zwischen Mensch und Maschine. Nur ein mit Spezialeffekten voll gepumpter Trickfilm. Die Story: erst dominiert der Roboter, dann reißt Timo das Ergebnis noch einmal mit spektakulären Spielzügen rum. Die wohl beabsichtigte Botschaft des Roboterherstellers wird am Ende noch einmal explizit formuliert:

„Not the best in table tennis. But probably the best in robotics.“

Die in meinem Umfeld gespiegelte Botschaft fiel eher anders aus. Sie war mehr von Enttäuschung geprägt. Herauszuhören war zusammenfassend: „KUKA hat ein Duell versprochen, aber nur einen Trickfilm geliefert.“ Auch das spiegelt sich in den sozialen Netzwerken wieder:

  • „Agreed, great idea for marketing, but poorly developed“
  • „I was so excited to see a duel between a robot and a world champion in table tennis. Expectations were like Kasparov vs Deep Blue, right? Turns out it’s just a very well shot but fake commercial.“

Evan Ackermann trifft auf IEEE Spectrum News den Nagel auf den Kopf: „But the encounter wasn’t the „robot vs. human duel“ we were promised. What Kuka gave us instead is an overproduced, highly edited commercial that, in our view, will puzzle (rather than amaze) those of us who follow robotics technology closely.“

In meinen Augen eine verpasste Chance, Menschen zu begeistern und durch technologische Leistung zu überzeugen.

Zu allem Überfluss erschien diese Woche dann ein weiteres Fake-Video (dieses Mal nicht von KUKA) von einem Tischtennisroboter, der angeblich in einer heimischen Garage realisiert wurde:

In der Beschreibung zum Video steht: „Nach ca. 2 Jahren Entwicklungsarbeit habe ich mit meinem Freund Michael nun unseren selbst gebauten Tischtennis Roboter soweit fertig gestellt, dass man mit ihm schon ordentliche Ballwechsel spielen kann.“ Leider ist das Video offensichtlich montiert, wie einige aufmerksame Kommentatoren anmerken:

  • „It is fake, look at 1:09! You can see that the camera in the upper right of the garage door is in front of the table tennis racket because it was added to the footage later.“
  • „Had me fooled until the close up at 2:20. Those movements don’t seem real, and it seems weird that every movement has the same sound even tough the speeds are different and so are the moves.“

Vieles davon finden wir auf Mikrokontroller.net wieder:

https://www.mikrocontroller.net/attachment/210215/busted.jpg
camera in the upper right of the garage door is in front of the table tennis racket

Als Trickfilm-Projekt ist das Video sicherlich überzeugend gut gemacht. Das belegen auch die zum Teil auch emotional aufgeladenen Diskussionen zur Echtheit des dargestellten Experiments…

Zwei Aspekte haben mich schließlich zur Wahl des Titels für diesen Blogeintrag bewegt:

Enttäuschung

Beide Videos, das von KUKA und das Garagen-Video, haben eine unglaublich rasante Verbreitung in den sozialen Netzwerken erfahren. Für den geneigten Robotik-Laien, so befürchte ich, mag allerdings durch beide Videos ein falscher Eindruck von dem entstehen, was Roboter heute leisten können. Die damit verbundenen komplexen Problemstellungen hat Arne in einem früheren Blogeintrag bereits ausführlich thematisiert.

Darüber hinaus erscheint Tischtennis als Demonstrator für die eingangs beschriebenen Forschungsprojekte erst einmal verbraucht. Bei jeder zukünftigen Demonstration des Experiments und jedem neuen Video dazu schwingt zunächst einmal unterschwellig mit: „Schau mal, da hat wieder einer so getan, als könnte er mit einem Roboter Tischtennis spielen“. Vielleicht fällt ja jemandem ein alternativer, hinsichtlich Komplexität, Anzahl der Freiheitsgrade und Realisierbarkeit im Labormaßstab vergleichbarer alternativer Demonstrator ein?

Aus robotischer Sicht finde ich die Ereignisse in Summe also sehr schade und komme zu dem Schluss: dies war ein trauriger Monat für die Robotik.

Elastische Roboterarmkörper: Fluch oder Segen? (Teil 2)

(this article is also available in English)

Grundsätzlich wird die strukturelle Elastizität in Roboter-Armkörpern bislang nachteilig gesehen. Sie verlängert Ausregelzeiten und verschlechtert die Positioniergenauigkeit. Allerdings wurde die Realisierbarkeit einer schnellen und genauen Positionierung eines gliedelastichen Roboterarms anhand von Ballfang-Experimenten exemplarisch gezeigt 1. Darüber hinaus kann die intrinsische Nachgiebigkeit jedoch auch vorteilhaft dazu ausgenutzt werden, die tatsächlich effektive Nachgiebigkeit des gesamten Arms aktiv zu beeinflussen. Wie im ersten Teil zu diesem Thema bereits dargestellt, setzt dies eine Kompensation der unerwünschten Effekte durch eine geeignete unterlagerte Regelung voraus. Dabei wurde die Wahrscheinlichkeit, auch zerbrechliche Objekte im Falle einer unvorhergesehenen Kollision zu beschädigen, deutlich gemindert.

Das obenstehende Video geht einen Schritt weiter. Beabsichtigte oder auch unbeabsichtigte Kontakte werden explizit auf Basis eines Modells der gedämpften Armdynamik detektiert und ermöglichen eine entsprechende Reaktion. Das Video stellt das gliedelastische Experimentalsystem TUDOR vor und zeigt insgesamt sieben Experimente zur Schwingungsdämpfung, zur Detektion genau wiederholbarer stumpfer wie auch scharfer Einschläge auf Luftballons sowie zerbrechlicher Christbaumkugeln, weniger exakt wiederholbarer Einschläge auf einen menschlichen Arm und schließlich zur physischen Interaktion mit dem Roboter.

Die Paare von Dehnungs-Messstreifen, die in der Nähe der Gelenke auf jedem nachgiebigen Arm appliziert sind, fungieren als lastseitige Drehmomentsensoren. Unter der Voraussetzung einer hinreichenden Schwingungsdämpfung kann die verbliebene Dynamik des Arms in Analogie zu konventionellen starren Roboterarmen modelliert werden. Diese Vorgehensweise ermöglicht die unmittelbare Anwendung von Verfahren zur Kollisionsdetektion und -reaktion, wie sie zuvor bei gelenkelastischen sowie starren Roboterarmen vorgestellt worden sind 2 .

Die dargestellen Ergebnisse verdeutlichen, dass die strukturelle Elastizität in Roboter-Armkörpern nicht zwingend als nachteilig gesehen werden muss. Vielmehr können sich mit Hilfe entsprechender Regelungsansätze aus der Ausnutzung dieser Eigenschaften neue Möglichkeiten ergeben.

Elastische Roboterarmkörper – Fluch oder Segen?

(this article is also available in English)

Die Vermeidung unerwünschter elastischer Effekte stellt eine große Herausforderung bei der Konstruktion von Robotern dar. Sie erschweren die präzise Positionierung des Roboterarms aufgrund statischer lastabhängiger Verbiegungen und schwingen nach jeder Bewegung nach. Vergleichbare Beispiele, bei denen Elastizitäten meist unerwünscht sind, finden wir fernab der Robotik bei Baumaschinen, wie Auto-Betonpumpen, Hubwagen aber auch Feuerwehrdrehleitern.

Wie wäre es, wenn auf die Steifigkeit bei der Auslegung einer Maschine weniger Wert gelegt werden müsste, da den damit einhergehenden unerwünschten Effekten mit regelungstechnischem Mitteln begegnet werden kann? Mechanische Strukturen könnten mit schlicht weniger Material leichter gebaut werden. Infolge dessen ließen sich Antriebe kleiner dimensionieren und hätten einen geringeren Energiebedarf.

Dieser Gedanke ist genau die Idee hinter dem Forschungsthema, dass ich bearbeite. Im Rahmen des Forschungsthemas haben wir den nachfolgend dargestellten gliedelastischen Roboterarm TUDOR als Experimentalsystem entwickelt.

/images/blog/TUDORBild.png
Das gliedelastische Experimentalsystem TUDOR

Er wird von drei bürstenlosen Gleichstrommotoren angetrieben und besitzt zwei Federstahlbalken als elastische Armkörper. Bei einer typischen Punkt-zu-Punkt-Bewegung der Antriebe treten Schwingungsamplituden von bis zu 10 cm auf.

Auf den Roboter-Konferenzen dieser Welt werden aktuell viele Beiträge zu Robotern mit elastischen Komponenten vorgestellt. Die elastischen Komponenten werden meist in die Robotergelenke integriert. Ein sehr heißes Thema sind vor allem Gelenke, bei denen sich die elastischen Eigenschaften der Komponenten aktiv variieren lassen. Die Elastizitäten bewirken, dass die aufgrund der hohen Getriebeübersetzung üblicher Roboterarme sehr großen Trägheitsmomente der Antriebe von den Trägheitsmomenten des übrigen Arms entkoppelt werden. Das bedeutet, dass im Falle eines physischen Kontakts mit dem Roboter der Interaktionspartner eine geringere Trägheit des Armes „sieht“. Damit kann beispielsweise eine Verringerung des Gefährdungspotenzials des Roboters erzielt werden. Auf der anderen Seite speichern die Elastizitäten zusätzliche Energie, die im Falle eine Kollision freigesetzt und wiederum ein erhöhtes Gefahrenpotential (Peitscheneffekt) zur Folge haben kann. Häufig werden Elastizitäten eingesetzt, um dem Roboter zu natürlicheren und auch dynamischen Bewegungen zu verhelfen. Es ist festzuhalten, dass durch eine geeignete Regelung gezielt eingesetzte elastische Komponenten zahlreiche Möglichkeiten eröffnen.

Aus regelungstechnischer Sicht sind die elastischen Eigenschaften in den Robotergelenken am einfachsten zu beherrschen. Hier ist die Elastizität entlang der Wirkachse der Antriebe konzentriert. Überwiegt die Elastizität in den Roboter Armkörpern, so sind die elastischen Eigenschaften entlang der Armkörper und senkrecht zur Wirkachse der Antriebe verteilt. Die dadurch entstehenden Laufzeiteffekte erschweren eine Regelung des Roboterarms. Dies mag der Grund sein, aus dem derzeit vorwiegend Arbeiten zu gelenkelastischen Roboterarmen publiziert werden.

Mit TUDOR hat uns zunächst die Frage interessiert, ob wir mit einem gliedelastischen Roboterarm trotz der Schwingungen und last- und konfigurationsabhängigen variablen Verbiegungen eine zielgerichtete Aufgabe präzise in geforderter Zeit erledigen können. Als Demonstration hierzu haben wir uns, wie im nachfolgenden Bild dargestellt, das Fangen eines Balles ausgedacht.

/images/blog/Ballfangen_Szenario.png
Ballfangen-Szenario

Ein menschlicher Werfer wirft den Ball in Richtung des Roboters. Die Flugbahn wird mittels einer Kinect-Kamera ermittelt und der Durchstoßpunkt der Flugbahn mit der Bewegungsebene des Roboters berechnet. Bevor der Ball am Roboter vorbei fliegt, bewegt der Roboter ein am Armende montiertes Netz dorthin und fängt den Ball damit auf. Das Resultat haben wir im nachfolgenden Video zusammengefasst:

A multi-link-flexible robot arm catching thrown softballs.

Sofern die Schwingungen regelungstechnisch unterdrückt und Abweichungen aufgrund statischer Verbiegungen kompensiert werden können, ließen sich in manchen Anwendungen diese elastischen Eigenschaften vielleicht nicht mehr nur als Problem verstehen. Vielmehr könnten elastische Eigenschaften vielleicht auch ausgenutzt werden, um beispielsweise Kontaktsituationen zu erkennen und darauf zu reagieren. Mit aktiv geregelten moderat gelenkelastischen Roboterarmen wurde dies ja bereits eindrucksvoll gezeigt.

Bezüglich gliedelastischer Roboter ist die Dämpfung auftretender Schwingungen bislang noch das dominierende Thema in Publikationen.

In den vergangenen Tagen konnten wir hier womöglich einen ersten Schritt über die reine Schwingungsdämpfung hinaus machen. Basierend auf einer Kraftregelung ist es uns gelungen ein Regelungskonzept zu entwickeln, bei dem wir die Schwingungen der mechanischen Struktur eines Roboterarms unterdrücken und zugleich die Nachgiebigkeit aktiv beeinflussen können. Einige Experimente dazu haben wir in nachfolgendem Video festgehalten:

Video zur Kraftregelung eines gliedelastischen Roboterarms

In dem Regelungskonzept wird die Information über die auf die Robterarme einwirkenden Kräfte mittels Dehnungsmessstreifen erfasst und individuell auf die Antriebsregler zurückgeführt. Auf diese Weise werden Schwingungen in der Armstruktur unterdrückt obgleich sie von der Gelenkbewegung oder der Interaktion mit der Umgebung herrühren. Zusätzlich lässt sich die Nachgiebigkeit des Roboterarms derart beeinflussen, dass wir mit sehr wenig Kraft den Roboterarm aus seiner aktuellen Position schieben können und die Wahrscheinlichkeit fragile Objekte bei einer unvorhergesehnen Kollision zu zerbrechen deutlich reduziert wird.

Also: elastische Roboterarmkörper – Fluch oder Segen? Trotz dieser Experimente sind noch zahlreiche Herausforderungen zu meistern und fragen zu beantworten. Dennoch scheint es mir, als schlummertem in den Elastizitäten der Armkörper nicht nur Probleme, sondern auch Potenziale.

Ich freue mich darauf zu sehen, wo die Reise noch hinführen wird.