botzeit | blog

Robotik-Blog

Alles Fake - Ein trauriger Monat für die Robotik

Jörn am 17.03.2014 um 20:06 Uhr - zum Artikel

In der vergangenen Woche fand das European Robotics Forum statt. Dabei handelt es sich um eine Networking-Veranstaltung, bei denen aktuelle und zukünftige Trends in der europäischen Forschungslandschaft diskutiert werden. Einem Blick ins Programm der Veranstaltung verrät bereits einen guten Überblick, was die deutsche Robotik Gemeinde umtreibt. Ein wesentlicher Aspekt ist es, die Verknüpfung zwischen Wahrnehmung und Handlung in Robotern zu verbessern. Es geht darum, einen Roboter in die Lage zu versetzen, komplexe Bewegungen und Manipulationsaufgaben, die einen hohen Grad an Geschick erfordern, selbstständig oder durch Demonstration zu erlernen und zu adaptieren.

In meinen Augen ist das ein hochspannendes Thema, in dessen Kontext ich vor etwas längerer Zeit bereits auf nachfolgende beeindruckende Videos aufmerksam geworden bin:

Towards Learning Robot Table Tennis

Das Video zeigt, wie ein Mensch einem Roboter das Tischtennis Spielen demonstriert. Anschließend erprobt und verbessert der Roboter selbstständig seine Fähigkeiten. Schließlich, spielt der Roboter Tischtennis mit einem Menschen.

Der Tischtennis Demonstrator ist meiner Ansicht nach sehr gut geeignet um Forschungsergebnisse dieser Art darzustellen. Es gibt viele Freiheitsgrade. Die Dynamik der Aufgabe ist hoch und fordernd. Eine Tischtennisplatte hat vertretbare Abmessungen, sodass sich der Demonstrator in einem Labor gut realisieren lässt. Das Spiel mit einem echten Menschen ist nicht planbar. Es kommt zu unvorhersehbaren Ballwechseln. Daher demonstriert das Experiment prinzipell sehr gut die Generalisierungsfähigkeit aber auch die Grenzen entwickelter Algorithmen.

Im Februar kündigte der Roboterhersteller KUKA mit nachfolgendem Video ein Tischtennis Duell zwischen einem KUKA Roboter und dem Tischtennisprofi Timo Boll an.

Timo Boll vs. KUKA robot - Teaser

Vor dem Hintergrund der zuvor dargestellten Forschungsarbeiten war ich natürlich freudig gespannt auf das Event. Und damit war ich nicht allein. Aus den Kommentaren:

Auf IEEE Spectrum News schreibt Evan Ackermann:

"Wow, Kuka wouldn't have set this whole thing up unless it was actually going to be a good match! Maybe we'll see some amazing feats of high speed robot arms, vision systems, and motion tracking!"

Die geschürte Erwartung bestand in einem tatsächlichen "Duell" im Sinne eines echten Spiels zwischen Mensch und Roboter. In meinem durchaus robotisch geprägten Umfeld wurden rege Diskussionen geführt, wie das hypothetische Match ausgehen würde. Ebenso wurden Vermutungen über technische Realisierungen diskutiert. Die oben angesprochenen Forschungsergebnisse haben die prinzipielle Machbarkeit ja bereits vor einiger Zeit demonstriert. Bis hier her: schöne Arbeit seitens des Marketings. Das mit Spannung erwartete Duell war in aller Munde. Am 10.03. erschien das dann das ernüchternde Video:

The Duel: Timo Boll vs. KUKA Robot

Für sich genommen ein nettes Werbe-Video. Aber nicht das angekündigte Spiel zwischen Mensch und Maschine. Nur ein mit Spezialeffekten voll gepumpter Trickfilm. Die Story: erst dominiert der Roboter, dann reißt Timo das Ergebnis noch einmal mit spektakulären Spielzügen rum. Die wohl beabsichtigte Botschaft des Roboterherstellers wird am Ende noch einmal explizit formuliert:

"Not the best in table tennis. But probably the best in robotics."

Die in meinem Umfeld gespiegelte Botschaft fiel eher anders aus. Sie war mehr von Enttäuschung geprägt. Herauszuhören war zusammenfassend:

"KUKA hat ein Duell versprochen, aber nur einen Trickfilm geliefert."

Auch das spiegelt sich in den sozialen Netzwerken wieder:

Evan Ackermann trifft es auf IEEE Spectrum News ganz gut:

"But the encounter wasn't the "robot vs. human duel" we were promised. What Kuka gave us instead is an overproduced, highly edited commercial that, in our view, will puzzle (rather than amaze) those of us who follow robotics technology closely."

In meinen Augen eine verpasste Chance, Menschen zu begeistern und durch technologische Leistung zu überzeugen.

Zu allem Überfluss erschien diese Woche dann ein weiteres Fake-Video (dieses Mal nicht von KUKA) von einem Tischtennis Roboter, der angeblich in einer heimischen Garage realisiert wurde:

Ulf Hoffmann Tischtennis Roboter

In der Beschreibung zum Video steht:

"Nach ca. 2 Jahren Entwicklungsarbeit habe ich mit meinem Freund Michael nun unseren selbst gebauten Tischtennis Roboter soweit fertig gestellt, dass man mit ihm schon ordentliche Ballwechsel spielen kann."

Leider ist das Video offensichtlich montiert, wie einige aufmerksame Kommentatoren anmerken:

Vieles davon finden wir auf Mikrokontroller.net wieder:

camera in the upper right of the garage door is in front of the table tennis racketcamera in the upper right of the garage door is in front of the table tennis racket

Als Trickfilm-Projekt ist das Video sicherlich überzeugend gut gemacht. Das belegen auch die zum Teil auch emotional aufgeladenen Diskussionen zur Echtheit des dargestellten Experiments...

Zwei Aspekte haben mich schließlich zur Wahl des Titels für diesen Blogeintrag bewegt:

Beide Videos, das von KUKA und das Garagen-Video, haben eine unglaublich rasante Verbreitung in den sozialen Netzwerken erfahren. Für den geneigten Robotik-Laien, so befürchte ich, mag allerdings durch beide Videos ein falscher Eindruck von dem entstehen, was Roboter heute leisten können. Die damit verbundenen komplexen Problemstellungen hat Arne in einem früheren Blogeintrag bereits ausführlich thematisiert.

Darüber hinaus erscheint Tischtennis als Demonstrator für die eingangs beschriebenen Forschungsprojekte erst einmal verbraucht. Bei jeder zukünftigen Demonstration des Experiments und jedem neuen Video dazu schwingt zunächst einmal unterschwellig mit: "Schau mal, da hat wieder einer so getan, als könnte er mit einem Roboter Tischtennis spielen". Vielleicht fällt ja jemandem ein alternativer, hinsichtlich Komplexität, Anzahl der Freiheitsgrade und Realisierbarkeit im Labormaßstab vergleichbarer alternativer Demonstrator ein?

Aus robotischer Sicht finde ich die Ereignisse in Summe also sehr schade und komme zu dem Schluss: dies war ein trauriger Monat für die Robotik.

Google kauft Boston Dynamics

Arne am 15.12.2013 um 11:37 Uhr - zum Artikel

Bam!

Google zeigt mit Wucht, dass es sein Engagement in der Robotik offenbar ernst meint. Gestern wurde bekannt, dass Google als achte Robotikfirma innerhalb kürzester Zeit nun auch Boston Dynamics gekauft hat.

Boston Dynamics hat in den letzten Jahren durch fulminante Robotervideos auf sich aufmerksam gemacht, die eine Bewegungsdynamik zeigen, die bis dahin weitestgehend unbekannt war. Eines der beeindruckensten Videos war und ist wahrscheinlich nach wie vor eines der ersten vom BigDog:

Eines der frühen Videos von BigDog mit beeindruckender Stabilität

Dieses Video hat mich beim ersten Mal schockiert. Insbesondere die Szene ab Minute 0:52, bei der BigDog auf Eis ausgleitet. Ich sah ein Robotervideo und mein Hirn signalisierte in dieser Szene, dass es auf ein lebendiges Tier blickt und war einigermaßen verwirrt.

Dass Boston Dynamics diese Kompetenzen auch auf humanoide Robotik übertragen hat, macht es nicht weniger beeindruckend bzw. (je nach Perspektive) beängstigend:

PetMan

Eine Suche nach Boston Dynamics (insbesondere Youtube) fördert noch viele weitere beeindruckende Videos zutage, etwa neue Vierbeiner-Videos von Boston Dynamics WildCat:

WildCat

Nun ist es so, dass Boston Dynamics bislang primär via DARPA vom Militär gefördert war und man daher keine zuverlässigen Informationen über die Technik hinter diesen Videos und die Reproduzierbarkeit der gezeigten Fähigkeiten bekommt. Es gibt Hinweise darauf, dass einzelne Szenen der beeindruckensten Videos von Boston Dynamics gegebenenfalls eher selten / einmalig so gut aussehen und so gut funktionieren.

Mit Googles Engagement ist aber auch hier die Hoffnung, dass Boston Dynamics Schritt für Schritt weniger vom Militär abhängen wird und daher auch mehr Informationen zur Technik und der Reproduzierbarkeit der Experimente publizieren darf. Für die Robotik-Szene wäre das sicherlich ein enormer Gewinn.

Google executives said the company would honor existing military contracts, but that it did not plan to move toward becoming a military contractor on its own.

Das klingt für mich nach einer etwas verklausulierten Aussage, dass Google zwar bestehende Verträge mit dem Militär noch erfüllen will (muss), Boston Dynamics aber sukzessive aus der Milotärrobotik zurückziehen will.

Das wäre toll!

Frühe Aufnahmen zweier BigDog-RoboterFrühe Aufnahmen zweier BigDog-Roboter

Google macht jetzt auch Robotik

Arne am 05.12.2013 um 13:49 Uhr - zum Artikel

Gestern gab es einen Paukenschlag in der Robotik: Google gab bekannt, man habe sieben Robotikfirmen gekauft und habe vor, in Zukunft in Robotik zu in­ves­tie­ren. Mit Meka Robotics and Redwood Robotics zum Beispiel hat man zwei nicht ganz unbekannte Firmen der Robotik gekauft, die sich auf humanoide Ro­bo­ter und Arme spezialisieren.

Das ist insofern ein Pauken­schlag, als die Robotik bislang eigentlich nur in der Industrierobotik, (Nachtrag: der Medizinrobotik) und dem Militär einen wirklich kräftigen Markt hat. Die Servicerobotik ist noch großteils von Forschung, Prototypen und nur vereinzelt kommerziell erfolg­reichen Robotern wie dem Roomba, Pool­reinigungs­robotern o. Ä. bestimmt.

Dass ein Unter­nehmen wie Google nun diesen Markt angreift (vorerst nur als moon­shot-Projekt, also ein eher visionäres Unter­fangen), könnte der Robotik in diesem Bereich gehörigen Schub geben. Mit Googles selbst­fahren­dem Auto haben sie schließ­lich schon gezeigt, dass sie auf diesem Feld durchaus zu ernst­haften Ent­wick­lun­gen willens und in der Lage sind:

Googles selbstfahrendes Auto gibt Gas

Und mit dem initialen Kauf von sieben Robotik-Unternehmen und dem ehemaligen Android-Chef Andy Rubin an der Spitze zeigt Google, dass sie es durchaus ernst meinen.

Ich bin gespannt, was da noch kommt. Ob dies die Robotiklandschaft (also die Servicerobotik, abseits der Industrie- und Militärrobotik) verändern kann/wird?

Oncilla verpackt

Arne am 10.10.2013 um 17:52 Uhr - zum Artikel

Oncilla verpacktOncilla verpackt

Der Oncilla ist verpackt und fertig für die Rückreise. Eingepackt in einem wasser- und stoßfesten Koffer, gemütlich in maßgeschneiderter Schamstoffeinfassung.

Auf geht's ins neue Zuhause!

Ein Vierbeiner für Bielefeld

Arne am 08.10.2013 um 17:51 Uhr - zum Artikel

Gestern habe ich mich mit einem leeren speziellen Transportkoffer auf den Weg nach Lausanne in die Schweiz gemacht, um einen neuen Roboter abzuholen und nach Bielefeld zu bringen. Noch ist der Koffer leer, aber für den Rückweg wird mir das BioRob Lab der EPFL in Lausanne einen nagelneuen Oncilla in den Koffer legen. Gerne geben sie den selbstverständlich nicht her, aber so will es das AMARSi-Projekt. Und ich auch.

Hier der aktuelle Zustand des Oncilla-Roboters von heut morgen, noch auf dem Ständer und (noch) mit losen Kabelsträngen. Bis morgen ist Peter (im Bild) noch mit der finalen Verkabelung beschäftigt:

Oncilla-Roboter noch auf dem Ständer und mit (noch) losen KabelsträngenOncilla-Roboter noch auf dem Ständer und mit (noch) losen Kabelsträngen

Hier ist ein Video der ersten Gehversuche (bzw. Trab-Versuche) eines Oncilla-Zwillings, das das Reservoir Lab aus Gent Anfang des Jahres gemacht hat:

Erste Gehversuche mit dem Oncilla (Trab)

Ich hole den Roboter persönlich ab, um gleichzeitig auch eine Einführung in die Hardware zu bekommen. Da ich selbst hauptsächlich mit Software arbeite, bin ich in Hardware-Fragen weitgehend unerfahren und benötige dringend einen Crash-Kurs in Inbetriebnahme und Wartung von Vierbeinern, damit ich unseren Oncilla nicht direkt bei den ersten Experimenten zerlege.

Gleichzeitig werden wir auch die Zeit nutzen, ein bisschen an der Control-Software zu hacken, was direkt vor Ort mit den Oncilla-Erschaffern einfacher ist als über größere Distanz. Ziel ist eine einfache API zu entwickeln, da Software und Hardware des Roboters (inklusive Simulator) in naher Zukunft vollständig Open Source sein sollen.

Am Donnerstag geht's dann samt Roboter im Gepäck zurück zum CoR-Lab nach Bielefeld, der Spezialkoffer mit den Schaumstoffeinlagen verhindert dabei hoffentlich sämtliche Beschädigungen.

Und dann wartet die eigentliche Arbeit: dem Oncilla neue Tricks beizubringen!

Veranstaltungshinweis

Jörn am 11.09.2013 um 13:45 Uhr - zum Artikel

Im November richtet die TU Dresden eine Autumn School zum Thema "Human Robot Interaction" aus.

Mehr Infos gibt's hier.

Autumn School 2013 "Human Robot Interaction"Autumn School 2013 "Human Robot Interaction"

Elastische Roboterarmkörper: Fluch oder Segen? (Teil 2)

Jörn am 29.08.2013 um 14:38 Uhr - zum Artikel

Oscillation Damping, Collision Detection and Reaction with a multi elastic link robot arm

Grundsätzlich wird die strukturelle Elastizität in Roboter-Armkörpern bislang nachteilig gesehen. Sie verlängert Ausregelzeiten und verschlechtert die Positioniergenauigkeit. Allerdings wurde die Realisierbarkeit einer schnellen und genauen Positionierung eines gliedelastichen Roboterarms anhand von Ballfang-Experimenten exemplarisch gezeigt [1] . Darüber hinaus kann die intrinsische Nachgiebigkeit jedoch auch vorteilhaft dazu ausgenutzt werden, die tatsächlich effektive Nachgiebigkeit des gesamten Arms aktiv zu beeinflussen. Wie im ersten Teil zu diesem Thema bereits dargestellt, setzt dies eine Kompensation der unerwünschten Effekte durch eine geeignete unterlagerte Regelung voraus. Dabei wurde die Wahrscheinlichkeit, auch zerbrechliche Objekte im Falle einer unvorhergesehenen Kollision zu beschädigen, deutlich gemindert.

Das obenstehende Video geht einen Schritt weiter. Beabsichtigte oder auch unbeabsichtigte Kontakte werden explizit auf Basis eines Modells der gedämpften Armdynamik detektiert und ermöglichen eine entsprechende Reaktion. Das Video stellt das gliedelastische Experimentalsystem TUDOR vor und zeigt insgesamt sieben Experimente zur Schwingungsdämpfung, zur Detektion genau wiederholbarer stumpfer wie auch scharfer Einschläge auf Luftballons sowie zerbrechlicher Christbaumkugeln, weniger exakt wiederholbarer Einschläge auf einen menschlichen Arm und schließlich zur physischen Interaktion mit dem Roboter.

Die Paare von Dehnungs-Messstreifen, die in der Nähe der Gelenke auf jedem nachgiebigen Arm appliziert sind, fungieren als lastseitige Drehmomentsensoren. Unter der Voraussetzung einer hinreichenden Schwingungsdämpfung kann die verbliebene Dynamik des Arms in Analogie zu konventionellen starren Roboterarmen modelliert werden. Diese Vorgehensweise ermöglicht die unmittelbare Anwendung von Verfahren zur Kollisionsdetektion und -reaktion, wie sie zuvor bei gelenkelastischen sowie starren Roboterarmen vorgestellt worden sind [2] .

Die dargestellen Ergebnisse verdeutlichen, dass die strukturelle Elastizität in Roboter-Armkörpern nicht zwingend als nachteilig gesehen werden muss. Vielmehr können sich mit Hilfe entsprechender Regelungsansätze aus der Ausnutzung dieser Eigenschaften neue Möglichkeiten ergeben.

1
Malzahn, Jörn, Anh Son Phung, and Torsten Bertram. "A Multi-Link-Flexible Robot Arm Catching Thrown Balls." 7th German Conference on Robotics; Proceedings of ROBOTIK. VDE, 2012.
2
De Luca, Alessandro, et al. "Collision detection and safe reaction with the DLR-III lightweight manipulator arm." IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006.

Mensch und Roboter Hand in Hand

Arne am 06.08.2013 um 15:06 Uhr - zum Artikel

Wer hat sich nicht schon einmal einen Roboter gewünscht, der im Haus­halt hilft? Der zum Beispiel schon einmal den Kuchen­teig anrührt, knetet und ausrollt, während man selbst die Glasur vorbereitet, bzw. einem das lästige Gemüse­schnib­beln beim Kochen abnimmt. Oder einen kleinen Roboter­assisten­ten, der einem bei heimischen Bastel­arbei­ten die richtigen Werk­zeuge anreicht, wie man es aus OP-Sälen in Kranken­häusern kennt: „Roboter, Schrauben­zieher!“„Schraubenzieher, und weiter?“„Schraubenzieher, bitte!“

Die Vision: Roboter und Mensch arbeiten zusammen [johanneswienke.de]Die Vision: Roboter und Mensch arbeiten zusammen [johanneswienke.de]

Zumindest in Industrie­szenarien ist das keine allzu weit entfernte Zukunfts­vision mehr. Flexibel anpassbare Roboter, die autonom oder Hand in Hand mit dem Menschen in einer Werkstatt oder Produktions­strasse arbeiten und diesen bei Fertigungs­auf­gaben unterstützen, sind schon seit geraumer Zeit ein strate­gisches Anliegen europäischer Wissenschaftler und der Robotik­industrie. So führt bereits die im Jahr 2009 ausgerufene europäische Strategic Research Agenda diese beiden Szenarien, den „Robotic Worker“ und den „Robotic Co-Worker“, als Kern­an­wen­dungs­sze­na­rien zukünf­tiger Industrie­robotik mit auf. Dabei geht es nicht um Groß­serien-Voll­auto­matisie­rung wie man sie z. B. aus der Auto­mobil­industrie kennt, in der Roboter an Roboter aufgereiht in Käfigen und – aus Sicher­heits­gründen – abge­schot­tet vom Menschen monatelang exakt die gleiche Aufgabe ausführen:

Vollautmatisierte Montage von Automobilen bei KIA

Es geht vielmehr um die Unter­stützung von Mitarbei­tern in kleinen und mittel­stän­dischen Unter­nehmen, deren Auftrags­lage sich relativ schnell ändern kann. Denkbar ist die Fertigung von Proto­typen, von denen häufig nur geringe, einstel­lige Stück­zahlen gefertigt werden. In diesem Kontext sind zur Zeit Hand­arbeits­plätze immer noch die Regel, d. h. Fachkräfte montieren und bearbeiten Bauteile bzw. bestücken und entladen Maschinen manuell. Häufig sind diese Arbeiten verbunden mit anstren­gender körper­licher Arbeit.

Eine Voll­automatisie­rung im klas­si­schen Sinne, also mit Robotern, die genau auf diesen einen Zweck ausgelegt sind und in aller Regel nicht oder nur sehr aufwendig an neue Fer­ti­gungs­auf­ga­ben angepasst werden können, macht hier allein schon aus ökonomischen Gründen keinen Sinn. Der durch die Einsparung einer Fachkraft gewonnene finan­zielle Vorteil wird sofort wieder zu­nichte gemacht durch den not­wen­digen, häufigen und kosten­inten­siven Einsatz von Experten, die den Roboter bei jeder Änderung im Pro­duk­tions­ablauf wieder an seine neue Aufgabe anpassen und um­program­mieren müssen. Zusätzlich sind viele Teil­aufgaben in solchen Fertigungs­prozessen sehr komplex und wenn überhaupt nur mit enorm hohem technischen Aufwand automatisch zu bewerk­stel­ligen, wie z. B. der berühmte Griff in die Kiste.

Die Idee ist vielmehr, den Menschen zu unterstützen, indem man ihm diejenigen Arbeiten überlässt, die er z. B. auf Grund besserer visueller Wahrnehmung und guten Finger­fertig­keiten kompetenter und schneller durchführen kann als jede Maschine, ihn aber durch den Roboter­assisten­ten von körperlich belas­ten­den Arbeiten zu befreien … der Roboter als dritte Hand. Damit jedoch beide, Roboter und Mensch, an einem Arbeits­platz gemeinsam sinnvoll zusam­men­arbeiten können, sind einige Heraus­forderun­gen zu bewältigen. Ein bisschen Buzzword-Bingo:

Technisch gesehen scheinen obige Herausforderungen so gut wie gelöst. Der vom Deutschen Luft- und Raumfahrtszentrum und KUKA gemeinsam entwickelten Leicht­bau­roboter IV (LBR IV), dessen serien­reifer Nachfolger KUKA LBR iiwa auf der diesjährigen Hannover Messe erstmals vorgestellt wurde, ist ein Beispiel. Das geringe Gewicht, Kraft­sensoren zur Kollisions­erkennung und eine sehr schnelle Regelung sind gute Voraus­setzun­gen für eine sichere Interaktion mit dem Menschen. Außerdem ist der LBR mit seinen sieben Bewegungs­achsen redundant, bietet also genügend Flexi­bi­li­tät, um um Hinder­nisse herum­zu­greifen oder Aufgaben auf mehr als nur eine Art zu erledigen.

Dass trotzdem nun nicht jeder sofort einem solchen Roboter Aufgaben bei­bringen kann, sieht man im folgenden Video, welches im Verlaufe einer umfang­reichen Feld­studie [1] mit Mit­arbei­tern der Firma Harting entstand:

Auch moderne Roboter sind nicht leicht zu bedienen.

Die Aufgabe für die Probanden bestand im Prinzip aus einer Art Heißer-Draht-Spiel: Der vorn am Roboter montierte Greifer sollte möglichst genau an dem Styropor-Parcours entlang geführt werden, während­dessen natürlich jede Kollision sowohl vorne am Greifer als auch am Rest des Roboter­körpers mit den Umgebungs­objekten vermieden werden sollte. Der Hintergrund: Genau durch diese Art des Führens (englisch: Kinesthetic Teaching) können dem Roboter Aufgaben beigebracht werden. Die in der Inter­aktion ent­stan­denen Bewe­gun­gen werden auf­gezeich­net und können auf Befehl schneller, langsamer oder leicht verändert wieder abgespielt werden. Der Fachbegriff hierfür lautet Teach-In und bezeichnet das aktuell übliche Verfahren, um Roboter „anzulernen“.

Wie man in dem Video sieht, geht das zum Teil gehörig schief! Die Versuchs­personen scheinen (trotz einer vorherigen Eingewöhungs­phase mit dem Roboter) überfordert von der Aufgabe, dem LBR den Parcours kollisions­frei bei­zu­bringen. Das liegt nicht an der Komplexität der Aufgabe: Eine einfache vorgegebene drei­dimensionale Bewegung wie die des Parcours aus der Studie nachzufahren, ist für uns Menschen typischer­weise zu bewältigen und wie wir später sehen werden auch in Verbindung mit einem Roboter leicht möglich. Der Grund ist die durch jahrelange Ingenieurs­kunst geschaffene, komplizierte Technik des LBR, die technische Vorteile, aber auch erhöhte Komplexität mit sich bringt. Denn hinter dem einen „I“ des Wortes „Interaktion“ verstecken sich noch zwei weitere: intuitiv und intelligent. Einem Roboterarm mit sieben Gelenken eine bestimmte drei­dimensio­nale Bewegung beizubringen und dabei gleichzeitig darauf achten zu müssen, dass er mit seinen sieben Achsen nicht mit Hinder­nissen im Arbeits­raum kollidiert, ist nicht intuitiv. Und eine vorgemachte Bewegung abspeichern und wieder abspielen zu können, ist nicht sonderlich intelligent.

Dieses Beispiel zeigt, dass in der Praxis mehr notwendig ist als nur die tech­nischen Möglichkeiten zu schaffen. Der Schlüssel, davon sind wir überzeugt, liegt in einer syste­ma­tischen Inte­gration von Hoch­techno­logie, maschi­nel­lem Lernen und einfacher Inter­aktion. Um ein solches Robotik­system für den Arbeiter vor Ort bedienbar zu machen, muss die eigent­liche techno­lo­gische Komplexi­tät im besten Fall hinter intuitiven Benutzer­schnitt­stellen und schritt­weiser Inter­aktion versteckt werden. Am Forschungsinstitut für Kognition und Robotik (CoR-Lab) der Univer­sität Biele­feld beschäftigen wir uns seit Jahren genau damit. Das Roboter­system, das oben im Video zu sehen war und auf einem KUKA LBR IV aufbaut, ist unsere Forschungs­plattform FlexIRob: ein Beispiel­szenario, bei dem wir diese Art von Integration untersuchen. Um die obige Aufgabe zu erleichtern, haben wir einen Ansatz entwickelt, mit dem jeder einen solchen Roboter an neue Umgebungen und Aufgaben anpassen kann. Die Idee ist im Prinzip einfach und beruht darauf, die komplexe Aufgabe in zwei Teil­schritte zu unter­teilen. Dass das funktioniert, ist im folgenden Video zu sehen:

Erleichterung der Interaktion durch Aufteilung in explizite Konfigurations- und assistierte Programmierphase (ab ca 1:15)

Der erste Teil­schritt der Aufgabe heißt Konfigurations­phase und ist unabhängig von der Aufgabe, die der Roboter­arm später ausführen soll. In dieser Phase bringt der Nutzer bzw. der Mit­arbeiter dem Roboter seine neue Umgebung bei, d. h. eventuelle dauerhafte Hindernisse, welche in seinem Arbeits­bereich platziert sind, wie z. B. herum­liegende Objekte, Säulen oder Regale. Als Mensch hat er dabei ein intuitives Verständnis der Szenerie: Er sieht die Hinder­nisse, er weiß, dass und wie man um sie herumgreifen muss und ist deswegen instinktiv in der Lage, den LBR dabei in aus­gesuchte Regionen zu führen und dort mit ihm zusammen einige Beispiel­bewegungen durch­zu­führen, ohne mit den Hinder­nissen zu kollidieren. Von diesen Beispiel­bewegungen kann nun der Roboterarm lernen, wie er sich in seinem Arbeits­bereich zu bewegen und wie er die Hinder­nisse im Zweifel zu umgreifen hat. Die Methoden zum Lernen, die dabei verwendet werden, gehen über simples Aufnehmen und Re­pro­du­zieren hinaus. Mit Hilfe von künst­lichen neuro­nalen Netzen ist das System nämlich nicht nur in der Lage sich innerhalb der trainier­ten Bereiche zu bewegen, sondern auch zwischen diesen hin- und her zu manö­vrieren und kollisions­freie Bewegungen für den Arm zu wählen. Diese Eigenschaft von Lern­verfahren nennt man Genera­lisierungs­fähigkeit und beschreibt die Fähigkeit, von wenigen Beispiel­daten ein generel­les Verhalten zu erlernen und dieses auf unbekannte Daten zu übertragen. In unserem Fall sind die Beispiel­daten die Trainings­daten, welche vom Nutzer zur Verfügung gestellt werden und im Video als grüne Punkte dargestell sind. Von diesen lernt der Roboter innerhalb weniger Minuten, beliebige Ziel­positionen anzufahren, ohne dabei mit den Hinder­nissen zu kollidieren. Und das nicht nur in den Trainings­berei­chen, sondern auch darüber hinaus [2] .

Im nächsten Schritt, geht es nun darum, ihm die eigentliche Aufgabe beizubringen. Das kann z. B. eine Schweiß- oder Klebenaht sein und auf verschie­denen Wegen passieren, z. B. erneut mit Hilfe von Kinesthetic Teaching, also dem direkten Führen des Roboters. Da dieser sich aber in seiner Umgebung nun schon zu bewegen weiß, braucht der Nutzer nicht mehr alle Gelenke gleichzeitig zu kontrollieren. Es reicht, dass er ihn vorn am Greifer entlang der spezifischen Aufgabe führt und der Roboter assistiert ihm dabei sozusagen bei der Hindernis­vermei­dung, wie in dem Video ab Minute 2:10 zu sehen ist. Diese Phase nennen wir deshalb Assisted Program­ming.

Der Knackpunkt zur Verein­fachung dieser Inter­aktion liegt also in der Auf­teilung der Gesamt­aufgabe in zwei oder mehr aufeinander aufbauende Teil­schritte, um den Nutzer bzw. Mitarbeiter des Roboters nicht zu überfordern. Im letzten Jahr haben wir mit Unter­stützung der Firma Harting oben genannte Pilot­studie zum Thema Kinesthetic Teaching durchgeführt und die beschriebene Idee evaluiert. Dabei haben 48 Mitarbeiter, unterteilt in zwei Versuchs­grup­pen, mit dem System inter­agiert und versucht, dem Roboter obigen Parcours beizubringen. Die Ergeb­nisse der einen Gruppe waren bereits im ersten Video zu sehen. Von 24 Versuchs­teil­nehmern, haben es gerade einmal zwei Probanden geschafft, den Parcours kollisions­frei abzufahren; eine Probandin brach ihren Versuch nach einiger Zeit frustriert ab. Die zweite Versuchs­gruppe hingegen benutzte den assistier­ten Modus und zeigte signi­fi­kant bessere Ergebnisse. Diese Teilnehmer benötigten im Schnitt weniger als die Hälfte der Zeit, um den Roboter anzulernen, die bei­gebrach­ten Bewegungen waren signifikant näher an der Vorgabe und wesent­lich ruckel­freier.

Unsere Experimente und Studien legen nahe, dass moderne Robotik­systeme durchaus über die Flexi­bi­li­tät verfügen, regelmäßig und vor Ort an wechselnde Aufgaben angepasst zu werden, wie es zum Beispiel für Klein­serien­ferti­gung oder Pro­to­typen­bau notwendig ist. Dazu reicht die rein technische Flexi­bi­li­tät allerdings nicht aus, denn sie erfordert immer noch lange Einarbei­tung und Robotik­exper­ten. Erst in der Kombi­nation mit lernenden Systemen und einfachen Inter­aktions­schnitt­stel­len spielen solche Systeme ihr volles Potential aus.

Christian Emmerich und Arne Nordmann sind Doktoranden am Forschungs­institut für Kognition und Robotik der Universität Bielefeld und beschäftigen sich mit lernenden, interaktiven Robotik­systemen.

1
Wrede, S., Emmerich, C., Grünberg, R., Nordmann, A., Swadzba A., Steil, J.J.: A User Study on Kinesthetic Teaching of Redundant Robots in Task and Configuration Space, Journal of Human-Robot Interaction (Special Issue: HRI System Studies), 2013
2
Näheres zu den verwendeten Lernverfahren hier: Nordmann A., Emmerich C., Rüther S., Lemme A., Wrede S., Steil J.J.: Teaching Nullspace Constraints in Physical Human-Robot Interaction using Reservoir Computing, International Conference on Robotics and Automation, 2012
1 2 3 4 5 • … • 10 • … • 20 • … • 30 • … • 31 ältere Blogeinträge