Traditionell ist die Interaktion mit Robotern darauf beschränkt, dass dem Roboter Kommandos zugesandt werden (in der Regel als textuelle Kommandos, seltener per Sprache) und der Roboter über geeignete Sensorik (Kameras, Mikrofone, Laserscanner, …) seine Umgebung wahrzunehmen versucht. Was dabei in der Interaktion mit Menschen entsteht, ist allerdings häufig eine holprige, wenig natürliche und dadurch für Menschen oft anstrengende Interaktion. Dass man auf diese Art und Weise auch Menschen mit Robotern interagieren lässt, die nicht an der Entwicklung beteiligt waren und dadurch nicht Verständnis für diese Schwierigkeiten aufbringen, passiert daher eher selten.
Eine Form der Interaktion, die sehr viel natürlicher ist, weil sie durch die physische Rückkopplung sehr viel direkter ist, ist die direkte Berührung und damit das Führen des Roboters. Der Mensch fasst den Roboter an der Hand (sofern er eine solche besitzt) und leitet den Roboter an. In der Robotik ist dies ein relativ aktueller Zweig der sogenannten Mensch-Maschine-Interaktion (MMI, Human Machine Interaction – HMI). Im Umfeld der industriellen Robotik sind ähnliche Techniken unter den Begriffen Teach-In und Kinestethic Teaching zu finden.
Es gibt mehrere Möglichkeiten, einen Roboter für diese Form der Interaktion auszustatten. Eine Möglichkeit ist es, die Hardware des Roboters bewusst so zu konstruieren, etwa durch die Integration von mechanischen Federn in Struktur des Roboters, dass dieser nachgiebig ist. Diese Art der Nachgiebigkeit wird in der Robotik bzw. Regelungstechnik als Passive Nachgiebigkeit (engl.: Passive Compliance) bezeichnet, da sie – einmal verbaut – das System ohne weiteres Zutun dauerhaft nachgiebig gestaltet.
Eine aufwendigere, aber dafür auch flexiblere Möglichkeit ist die Aktive Nachgiebigkeit (engl.: Active Compliance). Hierbei kann die Roboterhardware mechanisch völlig steif sein; die Nachgiebigkeit des Systems wird durch eine entsprechende Ansteuerung der Motoren simuliert. Dafür ist der Roboter mit Kraftsensorik ausgerüstet, die dem System konstant die auf den Roboter einwirkenden externen Kräfte meldet. Eine geschickte Regelung (Wikipedia) lässt den Roboter dann auf diese Kräfte auf die gleiche Art und Weise reagieren, wie es eine reale Feder tun würde: Bei kleiner Krafteinwirkung gibt der Roboter mit einer kleinen Bewegung nach, bei größerer Krafteinwirkung reagiert der Roboter mit einer deutlicheren Ausweichbewegung. Nicht, weil die Motoren nicht kräftig genug wären, den Kräften entgegenzuhalten, sondern weil dieses Verhalten den Eindruck eines weichen, nachgiebigen Systems erweckt und erwecken soll. Wie so eine Interaktion aussehen kann, zeigt das folgende Video:
Nachgiebigkeit ist dabei allerdings nicht allein für Interaktion eingesetzt; es ist auch ein enormer Sicherheitsaspekt. Ein Roboter, der mit seiner Umgebung (im schlimmsten Fall dem Menschen) kollidiert, weil er sie nicht richtig erkannt hat, richtet potentiell deutlich weniger Schaden an, wenn er nachgiebig ist;
Schaden an sich und der Umwelt. Dies gilt für passive Nachgiebigkeit, genauso wie für aktive Nachgiebigkeit, wie das Deutsche Luft- und Raumfahrtzentrum im folgenden Video eindrücklich und mit offenbar ausreichend Vertrauen in die Technik beweist; am Ende des Videos mit Messer und einem menschlichen Probanden: