Robotik-Blog

Delivery at Aircraft

Arne am 28.03.2013 um 19:55 Uhr - zum Artikel

Der Nao …Der Nao …

… fliegt natürlich nicht so im Flugzeug, sondern eigentlich in seiner eigenen Transportbox.

European Robotics Forum und INNOROBO 2013

Arne am 24.03.2013 um 13:31 Uhr - zum Artikel

Gerade komme ich zurück vom letztwöchigen European Robotics Forum 2013 (ERF), eine faszinierende Veranstaltung rund um die europäische Robotik. Faszinierend wegen ihrer Mischung aus Politik, Industrie und wissenschaftlichen Beiträgen, und dabei auch getragen von anwesenden Personen, die zu den prominenten Vertretern der europäischen Robotik zählten.

Dass auf dem Forum zusammen mit den dortigen Anhörigen die Strategic Research Agenda für die Robotik-Forschung in den EU der nächsten Jahre mitentwickelt wird, gibt dem zusätzliches Gewicht. In Workshops knien CTOs großer europäischer Robotik-Unternehmen, Robotik-Wissenschaftler und Leiter von Forschungsinstituten gemeinsam um Poster herum, um über zukünftig wichtige Themen und deren Priorisierung zu debattieren. Der Entstehung der (inhaltlichen und politischen) Richtungsentscheidungen der nächsten Jahre in der europäischen Robotik zuzusehen und mitzubekommen, dass dies in einem durchaus konstruktiven Austausch zwischen Industrie und Wissenschaft geschieht, ist eigentlich recht beruhigend.

Wer sich für die strategische Ausrichtung der Robotik, deren zukünftige Themenfelder und Prioritäten, sowie vor allem für die industrielle und akademische Sicht darauf interessiert, für den ist das ERF vermutlich die lohnendste öffentliche Veranstaltung in Europa.

Ich habe viel mit anderen Robotikern sprechen können, Herrn Marsiske vom Heise-Verlag habe ich aber leider verpasst. Der war vor Ort und hat mehrfach über das ERF und die angegliederte Robotik-Messe INNOROBO berichtet:

Ein paar Bilder von der Innorobo-Messe (Ich bitte, die Qualität zu entschuldigen, ich hatte nur meine Handykamera dabei):

AmphiBot, der sich an Land wie ein Salamander fortbewegt ...AmphiBot, der sich an Land wie ein Salamander fortbewegt ...
... und im Wasser wie eine Schlange.... und im Wasser wie eine Schlange.
Roboter mit verbesserter GeländegängigkeitRoboter mit verbesserter Geländegängigkeit
iCub greift nach einem BalliCub greift nach einem Ball
Dre BioLoid-Stand mit Humanoiden und Hexapod-RoboternDre BioLoid-Stand mit Humanoiden und Hexapod-Robotern

Elastische Roboterarmkörper – Fluch oder Segen?

Jörn am 10.02.2013 um 16:57 Uhr - zum Artikel

Die Vermeidung unerwünschter elastischer Effekte stellt eine große Herausforderung bei der Konstruktion von Robotern dar. Sie erschweren die präzise Positionierung des Roboterarms aufgrund statischer lastabhängiger Verbiegungen und schwingen nach jeder Bewegung nach. Vergleichbare Beispiele, bei denen Elastizitäten meist unerwünscht sind, finden wir fernab der Robotik bei Baumaschinen, wie Auto-Betonpumpen, Hubwagen aber auch Feuerwehrdrehleitern.

Wie wäre es, wenn auf die Steifigkeit bei der Auslegung einer Maschine weniger Wert gelegt werden müsste, da den damit einhergehenden unerwünschten Effekten mit regelungstechnischem Mitteln begegnet werden kann? Mechanische Strukturen könnten mit schlicht weniger Material leichter gebaut werden. Infolge dessen ließen sich Antriebe kleiner dimensionieren und hätten einen geringeren Energiebedarf.

Dieser Gedanke ist genau die Idee hinter dem Forschungsthema, dass ich bearbeite. Im Rahmen des Forschungsthemas haben wir den nachfolgend dargestellten gliedelastischen Roboterarm TUDOR als Experimentalsystem entwickelt.

Das gliedelastische Experimentalsystem TUDORDas gliedelastische Experimentalsystem TUDOR

Er wird von drei bürstenlosen Gleichstrommotoren angetrieben und besitzt zwei Federstahlbalken als elastische Armkörper. Bei einer typischen Punkt-zu-Punkt-Bewegung der Antriebe treten Schwingungsamplituden von bis zu 10 cm auf.

Auf den Roboter-Konferenzen dieser Welt werden aktuell viele Beiträge zu Robotern mit elastischen Komponenten vorgestellt. Die elastischen Komponenten werden meist in die Robotergelenke integriert. Ein sehr heißes Thema sind vor allem Gelenke, bei denen sich die elastischen Eigenschaften der Komponenten aktiv variieren lassen. Die Elastizitäten bewirken, dass die aufgrund der hohen Getriebeübersetzung üblicher Roboterarme sehr großen Trägheitsmomente der Antriebe von den Trägheitsmomenten des übrigen Arms entkoppelt werden. Das bedeutet, dass im Falle eines physischen Kontakts mit dem Roboter der Interaktionspartner eine geringere Trägheit des Armes "sieht". Damit kann beispielsweise eine Verringerung des Gefährdungspotenzials des Roboters erzielt werden. Auf der anderen Seite speichern die Elastizitäten zusätzliche Energie, die im Falle eine Kollision freigesetzt und wiederum ein erhöhtes Gefahrenpotential (Peitscheneffekt) zur Folge haben kann. Häufig werden Elastizitäten eingesetzt, um dem Roboter zu natürlicheren und auch dynamischen Bewegungen zu verhelfen. Es ist festzuhalten, dass durch eine geeignete Regelung gezielt eingesetzte elastische Komponenten zahlreiche Möglichkeiten eröffnen.

Aus regelungstechnischer Sicht sind die elastischen Eigenschaften in den Robotergelenken am einfachsten zu beherrschen. Hier ist die Elastizität entlang der Wirkachse der Antriebe konzentriert. Überwiegt die Elastizität in den Roboter Armkörpern, so sind die elastischen Eigenschaften entlang der Armkörper und senkrecht zur Wirkachse der Antriebe verteilt. Die dadurch entstehenden Laufzeiteffekte erschweren eine Regelung des Roboterarms. Dies mag der Grund sein, aus dem derzeit vorwiegend Arbeiten zu gelenkelastischen Roboterarmen publiziert werden.

Mit TUDOR hat uns zunächst die Frage interessiert, ob wir mit einem gliedelastischen Roboterarm trotz der Schwingungen und last- und konfigurationsabhängigen variablen Verbiegungen eine zielgerichtete Aufgabe präzise in geforderter Zeit erledigen können. Als Demonstration hierzu haben wir uns, wie im nachfolgenden Bild dargestellt, das Fangen eines Balles ausgedacht.

Ballfangen-SzenarioBallfangen-Szenario

Ein menschlicher Werfer wirft den Ball in Richtung des Roboters. Die Flugbahn wird mittels einer Kinect-Kamera ermittelt und der Durchstoßpunkt der Flugbahn mit der Bewegungsebene des Roboters berechnet. Bevor der Ball am Roboter vorbei fliegt, bewegt der Roboter ein am Armende montiertes Netz dorthin und fängt den Ball damit auf. Das Resultat haben wir im nachfolgenden Video zusammengefasst:

A multi-link-flexible robot arm catching thrown softballs.

Sofern die Schwingungen regelungstechnisch unterdrückt und Abweichungen aufgrund statischer Verbiegungen kompensiert werden können, ließen sich in manchen Anwendungen diese elastischen Eigenschaften vielleicht nicht mehr nur als Problem verstehen. Vielmehr könnten elastische Eigenschaften vielleicht auch ausgenutzt werden, um beispielsweise Kontaktsituationen zu erkennen und darauf zu reagieren. Mit aktiv geregelten moderat gelenkelastischen Roboterarmen wurde dies ja bereits eindrucksvoll gezeigt.

Bezüglich gliedelastischer Roboter ist die Dämpfung auftretender Schwingungen bislang noch das dominierende Thema in Publikationen.

In den vergangenen Tagen konnten wir hier womöglich einen ersten Schritt über die reine Schwingungsdämpfung hinaus machen. Basierend auf einer Kraftregelung ist es uns gelungen ein Regelungskonzept zu entwickeln, bei dem wir die Schwingungen der mechanischen Struktur eines Roboterarms unterdrücken und zugleich die Nachgiebigkeit aktiv beeinflussen können. Einige Experimente dazu haben wir in nachfolgendem Video festgehalten:

Video zur Kraftregelung eines gliedelastischen Roboterarms

In dem Regelungskonzept wird die Information über die auf die Robterarme einwirkenden Kräfte mittels Dehnungsmessstreifen erfasst und individuell auf die Antriebsregler zurückgeführt. Auf diese Weise werden Schwingungen in der Armstruktur unterdrückt obgleich sie von der Gelenkbewegung oder der Interaktion mit der Umgebung herrühren. Zusätzlich lässt sich die Nachgiebigkeit des Roboterarms derart beeinflussen, dass wir mit sehr wenig Kraft den Roboterarm aus seiner aktuellen Position schieben können und die Wahrscheinlichkeit fragile Objekte bei einer unvorhergesehnen Kollision zu zerbrechen deutlich reduziert wird.

Also: elastische Roboterarmkörper - Fluch oder Segen? Trotz dieser Experimente sind noch zahlreiche Herausforderungen zu meistern und fragen zu beantworten. Dennoch scheint es mir, als schlummertem in den Elastizitäten der Armkörper nicht nur Probleme, sondern auch Potenziale.

Ich freue mich darauf zu sehen, wo die Reise noch hinführen wird.

Programmhinweis für heute: „Die Roboter kommen“

Arne am 05.02.2013 um 13:10 Uhr - zum Artikel

Ein kleiner Programmhinweis: Gleich, heute um 15:00 Uhr läuft im WDR die Sendung Planet Wissen„Die Roboter kommen“.

Zu Gast sind unter Anderem Dr. Alin Olimpiu Albu-Schäffer vom Deutschen Zentrum für Luft- und Raumfahrt und Prof. Jochen Steil, vom CoR-Lab in Bielefeld.

Es wird eingie Roboter zu sehen geben und sicher interessant.

Update: Jetzt auch in der Mediathek: Mediathek: Die Roboter kommen

Linkdump: Nützliches und robotische Spielereien

Jörn am 04.02.2013 um 23:14 Uhr - zum Artikel

Nachfolgend ein paar Links der letzten Tage

  • Ein Massage-Roboter: Viele Leute, denen ich davon erzählte, wollten so ein Ding haben. Ein witziges kleines Gadget, das mal wieder jemand anders vor mir erfunden hat:

Der Roboter kommt zur Schulter gefahren, sobald man sich aufsetzt.
  • Ein robotisches Kunstprojekt: In Japan wurde ein 4.5 Tonnen schwerer und vier Meter hoher [1] Mech vorgestellt, der Kunststoffkugeln und Wasserflaschen verschießen kann. Man kann ihn kaufen, sich reinsetzen und ihn fahren, er lässt sich aber auch per Smartphone vernsteuern. Man mag davon halten was man will, aber über zwei Millionen Menschen wollten [2] die Videos zu diesem Projekt sehen.

  • Ein Zweirad mal anders : Eigentlich kein Roboter, aber von der Idee über die Entwicklung bis zum Dreh des Videos kann ich mir vorstellen, dass hier eine Menge Spaß mitgefahren ist:

Das sieht nach Spaß aus!
  • Eine Roboterhand mit integrierter Kraft-Regelung und zahlreichen Greifmöglichkeiten. Dabei bleibt die Hand nahezu in der Größe ihres menschlichen Vorbildes.

Recht schlank schaut sie aus.

Viel Spaß beim Stöbern!

1
: Heise
2
: Youtube

Glückwunsch zu fünf Jahren ROS

Arne am 03.12.2012 um 23:22 Uhr - zum Artikel

Die Robotik-Softwareschmiede Willow Garage feiert das Fünfjährige ihres open-source Robot Operating System (ROS) mit diesem coolen Artikel und diesem coolen Video:

ROS: Five Years

Der Artikel zeigt beeindruckend, welche Verbreitung ROS in den letzten fünf Jahren in der wissenschaftlichen Robotiklandschaft erhalten hat, zum Beispiel die Anzahl der offiziell unterstützten Roboter (beeindruckende achtundzwanzig), womit es unter den sonst in der Robotik häufigen Einzellösungen positiv hervorsticht.

Und das alles frei verfügbar unter der BSD-Lizenz!

Glückwunsch! Und alles Gute für die nächsten fünf Jahre.

Kommentar zu: „Roboter im echten Leben“

Arne am 23.11.2012 um 21:08 Uhr - zum Artikel

Nebenan bei Robonews schrieb man vorgestern über Roboter im “echten Leben” – Roboter in Fukushima und versucht, Beispiele für Roboter im „echten Leben“, also für den Einsatz in realer Umgebung, zu geben. Die Idee ist gut, aber die genannten Beispiele können die Überschrift gerade nicht stützen. Ich hatte begonnen, einen Kommentar zu dem Blogartikel zu schreiben. Der Kommentar wurde aber immer länger und ausführlicher, weswegen ich ihn jetzt hier aufschreibe.

Industrieroboter, die dort als Beispiel genannt werden, funktionieren nämlich in der Regel für eine einzelne Aufgabe, in streng strukturierter, abgesperrter und unveränderlicher Umgebung. Und die Bilder des Roboters, der womöglich in Fukushima zum Einsatz kommen soll, sind wohl nicht umsonst alle in einer Halle mit künstlich gebauten und vorher bekannten Hindernissen entstanden.

Wie wenig das mit der echten, harten Realität zu tun hat, deutet sich bei Betrachtung der Reaktionen auf Fukushima an: über Wochen ist dort nämlich zum Erstaunen der breiten Öffentlichkeit kein Roboter zum Einsatz gekommen. Bis die Japaner einen Monat nach dem Unglück mit dem geliehenen amerikanischen Militärroboter PackBot immerhin ein paar Messungen von innerhalb der Reaktorgebäude bekommen konnten. (Ein Umstand, der einen gehörigen Einfluss auf die öffentliche Wahrnehmung der japanischen Robotik in der eigenen Bevölkerung hatte)

Bilder von PackBot aus dem Innern von Fukushima

Roboter im echten Leben müssen nämlich nicht nur mit ein paar Holztreppen in gut ausgeleuchteter Umgebung zurechtkommen, wie es die Bilder im oben genannten Artikel zeigen, sondern die Realität ist viel brutaler: Plötzlich ist überall Schutt und Wasser, die Temperaturen liegen weit jenseits üblicher Werte, so dass jegliche Standardelektronik versagt. Sensoren versagen, da alles dunkel, nass und dreckig ist. Der Funkkontakt zum Roboter bricht aufgrund der radioaktiven Strahlung ab, usw. …

Dass Roboter außerhalb ihrer Laborumgebung zurechtkommen, müssen sie auch an echten Problemen zeigen, wenn diese auftreten. Hübsche Bilder von Robotern auf Holztreppen Monate nach einer Katastrophe zu zeigen, oder zwei Jahre nach dem Auftreten des Problems einen Roboter dafür konstruiert zu haben, ist kein guter Hinweis für die Einsatzfähigkeit und Robustheit, die für den Einsatz in der Realität außerhalb von Laboren notwendig ist.

Das Problem ist auf ungefähr allen Ebenen unglaublich schwierig. Und gerade deshalb muss man mit Aussagen vorsichtig umgehen, dieses Problem habe man im Griff.

Roboter im Dortmunder Tatort

Arne am 22.09.2012 um 21:49 Uhr - zum Artikel

Am morgigen Sonntagabend läuft die Premiere des Dortmunder Tatort Alter Ego (ARD, Sonntag, 20.15 Uhr), der schon vor Wochen an den Bielefelder Robotik-Instituten CoR-Lab und CITEC seine Schatten voraus warf.

Der Grund: Die Spurensuche führt die Kommissare im Tatort in ein Technologiezentrum spielt, in dem an menschenähnlichen Robotern geforscht wird. Für den Spielfilm wurde das Technologiezentrum mit den zwei Bielefelder Robotern iCub und Flobi ausgestattet wurde. Die Ermittlerin befragt darin eine Tat-Zeugin, während ihr Kollege mit unserem iCub spielt.

Der Roboter wurde dazu so programmiert, dass er von einem Schauspieler gesteuert werden konnte, dessen Bewegungen mit Infrarotsensorik erfasst und gleichzeitig vom iCub nachgespielt werden.

Vorbereitung einer Filmszene mit dem Bielefelder iCubVorbereitung einer Filmszene mit dem Bielefelder iCub

Das Humanoids Lab am CoR-Lab, in dem der iCub normalerweise steht, ist nur wenige Türen von meinem Büro entfernt und auch wenn ich nicht selbst an den Vorbereitungen beteiligt war, erinnere ich mich an so manchen langen Abend, an dem im Lab die Vorbereitungen liefen. Schon Tage vor dem Dreh wurden die Roboter für den Auftritt vorbereitet und programmiert, denn die Anforderungen für einen Filmdreh sind andere als die der täglichen Forschungsarbeit am Institut, insbesondere die neue Umgebung mit vielen Menschen, viel Hektik, neuen Anforderungen und komplett anderen Lichtverhältnissen als im gewohnten Labor. Die Kollegen Florian Lier, Simon Schulz, Lars Schillingmann und Frank Hegel haben dann auch den Roboter nicht nur selbst zum Drehort gebracht, sondern auch den ganzen Drehtag vor Ort betreut.

Leider ist das zahlreiche Filmmaterial mit dem Roboter letztendlich stark gekürzt worden, auf etwa 5 Sekunden. Spaß hat es allen Beteiligten aber wohl trotzdem gemacht und war für die Bielefelder Robotik auf jeden Fall eine spannende Erfahrung.