Robotik-Blog

Lesetipp, oder so

Arne am 24.11.2010 um 20:57 Uhr - zum Artikel

Ich bin leider etwas zu spät für einen Lesetipp, möchte aber trotzdem noch auf einen Artikel in der vorletzten Ausgabe der c’t (Ausgabe 24/2010 vom 8. November) hinweisen. Dort schreibt Hans-Arthur Marsiske einen Artikel zu laufenden Robotern, in dem ich auch zweimal zur Sprache komme. Marsiske schreibt regelmäßig tolle, gut recherchierte Robotik-Artikel, vornehmlich für den Heise-Verlag, von denen ich auch schon einige hier im Blog verlinkt habe. Hans-Arthur Marsiske war über meinen Artikel zur iCub Summer School auf mich aufmerksam geworden und hat im Rahmen seiner Recherche unter Anderem mit mir telefoniert und unser Institut besucht.

Der Artikel unter dem Titel Lauftraining für Roboter diskutiert den aktuellen Stand der Forschung zum zweibeinigen Laufen bei Robotern, vor Allem am Beispiel des iCubs und des BioBiped aus Darmstadt. Für Interessierte ist der Artikel auch jetzt noch für 1,50 EUR – wenn auch mit umständlichen Bezahlverfahren – zu haben.

Universal Jamming Gripper

Arne am 07.11.2010 um 18:58 Uhr - zum Artikel

Kaffee ist ein großartiges Getränk. Dass man damit auch Gegenstände unterschiedlicher Form und Größe heben kann, war bislang wenig bekannt. Genau das zeigt aber das Ergebnis einer Zu­sam­men­ar­beit zwischen dem Cornell Computational Synthesis La­bo­ra­to­ry der University of Chicago und iRobot: der Universal Jamming Gripper:

Der Universal Jamming Gripper

Eine beeindruckende Palette an Gegenständen, die der Greifer (sofern man ihn so bezeichnen mag) hochhebt. Kaffeepulver, ein Luftballon und eine Va­ku­um­pum­pe … so einfach und effektiv kann Technik sein.

Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M., Lipson, H., Jaeger, H.: Universal robotic gripper based on the jamming of granular material, Proceedings of the National Academy of Sciences (PNAS), 2010

Die neuen Beine des iCub

Arne am 03.11.2010 um 14:34 Uhr - zum Artikel

In der letzten Zeit habe ich einige Male über den iCub geschrieben. Das liegt zum Einen daran, dass ich bekennender iCub-Fan bin und zum Anderen daran, dass ich in letzter Zeit immer häufiger von Arbeitswegen mit ihm in Berührung komme. Endlich finde ich nun die Zeit, mal über eine neue Entwicklung des iCub zu schreiben, die ich schon seit einigen Monaten mit Spannung verfolge und zu der ich jetzt auch Bilder und Videos aus erster Hand zeigen kann: Die neuen Beine des iCub.

Der iCub ist im Rahmen des RobotCub-Projekts seit 2004 entstanden und wird seitdem kontinuierlich weiterentwickelt. Hauptsächlich bezog sich dies in den letzten Jahren auf Weiterentwicklung der Firmware und der iCub-Softwareumgebung, um die vorhandene Hardware immer besser, effektiver und einfacher nutzen zu können. Da der iCub als humanoide Forschungsplattform aber so erfolgreich ist, wird er konsequenterweise auch in Sachen Hardware weiterentwickelt. Kopf, Hände, Arme, Beine … für nahezu alle Teile existieren mehr oder weniger fortgeschrittene Pläne und Ansätze zur Weiterentwicklung.

Am CoR-Lab arbeiten wir zur Zeit noch mit der ersten Version des iCub, auf der Summer School jedoch durfte ich schon mit einer weiterentwickelten Version des iCub arbeiten, die über Kraftsensorik in Armen und Beinen verfügt. Diese Kraftsensoren können (noch relativ grob) Kontaktkräfte messen, die auf Arme und Beine einwirken. So erlaubt diese iCub-Version zum Beispiel, dass man den iCub bei der Hand nimmt und seinen Arm führt; ein bedeutender Fortschritt in der Interaktion von Mensch und Roboter, wenn man ihn anfassen und führen kann. Eine weitere faszinierende Möglichkeit ist, den Roboter in einen Nachgiebigkeits-Modus zu schalten. In diesem Modus reagiert der Roboter auf die Kräfte, die auf ihn wirken, auf die gleiche Art, wie es eine Feder tun würde: Bei kleiner Krafteinwirkung gibt der Roboter ein wenig nach, bei größerer Krafteinwirkung gibt der Roboter deutlicher nach. Der Roboter fühlt sich dadurch sanft und weich an. Dieser Modus, diese Art der Regelung, nennt sich Active Compliance (aktive Nachgiebigkeit). Ein Video mit dieser iCub-Version zeigt, wie Ugo diese Eigenschaften nutzt, um den iCub mit Spielzeug vertraut zu machen:

Der iCub wird geführt und kann Objekte ertasten

Bei meinem Besuch am IIT (Italien Institute of Technology in Genua) an einem Tag während der Summer School habe ich eine iCub-Version kennengelernt, die für das AMARSi-Projekt entwickelt wird und dieses Konzept noch weiter treibt. Dieser iCub (der vielleicht irgendwann einmal auf den Namen cCub, Compliant iCub, hören wird), hat nicht nur wie sein Vorgänger in Armen und Beinen jeweils einen Kraftsensor, sondern er verfügt über neue Gelenke, die jeweils sowohl weitere Kraftsensorik als auch echte mechanische Federn integrieren. Was diese integrierten Gelenk-Module in dem Betrachter auszulösen vermögen, wenn sich der iCub damit bewegt, ist eine der faszinierendsten Dinge, die ich in letzter Zeit in der Robotik gesehen habe. Die Kombination aus Active Compliance, also der durch Sensorik und Regelung simulierten Nachgiebigkeit, mit der realen Nachgiebigkeit der eingebauten mechanischen Fähigkeiten (Passive Compliance), bewirkt eine Natürlichkeit der Bewegung des Roboters, die im ersten Moment irritierend bis verstörend wirken kann.

Active Compliance allein macht die Interaktion mit dem Roboter schon deutlich natürlicher, und Bewegungen sehen weicher, runder und natürlicher aus. Nichtsdestotrotz bleibt der Eindruck beim Betrachter, dass es sich – tatsächlich – nach wie vor um eine Maschine handelt. Und genau dieser Eindruck scheint in dem Moment zu verschwinden, in dem zu der aktiven Nachgiebigkeit die echte (passive) Nachgiebigkeit der mechanischen Federung hinzukommt. Der Roboter bewegt sich damit offenbar in einer Art und Weise mit unterbewusst wahrgenommenen Schwingungen, die im menschlichen Hirn den Eindruck erwecken, hier würde sich ein biologisches Körperteil bewegen. Die mechanische Federung scheint ein ähnliches Muster aus Schwingungen und Oberschwingungen zu erzeugen, wie es menschliche Muskeln und Sehnen tun. Für mich war dies ein faszinierender, erschreckender Moment – als Robotiker allerdings positiv, was vermutlich nicht jedem Betrachter so ergeht. Nikos Tsagarakis, dessen Gruppe am IIT diese integrierten nachgiebigen Gelenke des iCub entwickelt, hat mir Fotos und Videos zugesandt und mir erlaubt, diese hier im Blog zu veröffentlichen. Zu sehen sind im folgenden Video die neuen Beine (noch ohne Oberkörper), wie sie balancieren und kleine Schritte tun. Ich weiß nicht, wie gut der beschriebene Effekt im Video erkennbar ist, wenn man ihn nicht live erlebt, aber dies ist der Versuch:

Die neuen Beine des iCub in Bewegung

Wer dies im Video nicht zu erkennen vermag, erfreut sich vielleicht an der Vorstellung des vergangenen AMARSi-Projekttreffens, als bei der Live-Demo dieser Beine grob geschätzt 40 Wissenschaftler, die in ihrem Leben schon hunderte Roboter gesehen haben, schweigend und mit großen Augen minutenlang diesen Beinen bei ihrer einfachen Bewegung zusahen.

Und hier die Beine nochmal in der Großaufnahme:

Die neuen Beine des iCub (Foto: IIT)Die neuen Beine des iCub (Foto: IIT)

Technisch Interessierte finden eine detailliertere Beschreibung dieser integrierten Aktuatoren in der Konferenzbeitrag zur ICRA 2009: A Compact Soft Actuator Unit for Small Scale Human Friendly Robots (kostenpflichtiger Zugriff via IEEE). Die weitere Entwicklung dieser iCub-Version wird weiterhin auf der Website des AMARSi-Projekts dokumentiert.

Compliance

Arne am 03.11.2010 um 14:34 Uhr - zum Artikel

Traditionell ist die Interaktion mit Robotern darauf beschränkt, dass dem Roboter Kommandos zugesandt werden (in der Regel als textuelle Kommandos, seltener per Sprache) und der Roboter über geeignete Sensorik (Kameras, Mikrofone, Laserscanner, …) seine Umgebung wahrzunehmen versucht. Was dabei in der Interaktion mit Menschen entsteht, ist allerdings häufig eine holprige, wenig natürliche und dadurch für Menschen oft anstrengende Interaktion. Dass man auf diese Art und Weise auch Menschen mit Robotern interagieren lässt, die nicht an der Entwicklung beteiligt waren und dadurch nicht Verständnis für diese Schwierigkeiten aufbringen, passiert daher eher selten.

Eine Form der Interaktion, die sehr viel natürlicher ist, weil sie durch die physische Rückkopplung sehr viel direkter ist, ist die direkte Berührung und damit das Führen des Roboters. Der Mensch fasst den Roboter an der Hand (sofern er eine solche besitzt) und leitet den Roboter an. In der Robotik ist dies ein relativ aktueller Zweig der sogenannten Mensch-Maschine-Interaktion (MMI, Human Machine Interaction – HMI). Im Umfeld der industriellen Robotik sind ähnliche Techniken unter den Begriffen Teach-In und Kinestethic Teaching zu finden.

Es gibt mehrere Möglichkeiten, einen Roboter für diese Form der Interaktion auszustatten. Eine Möglichkeit ist es, die Hardware des Roboters bewusst so zu konstruieren, etwa durch die Integration von mechanischen Federn in Struktur des Roboters, dass dieser nachgiebig ist. Diese Art der Nachgiebigkeit wird in der Robotik bzw. Regelungstechnik als Passive Nachgiebigkeit (engl.: Passive Compliance) bezeichnet, da sie – einmal verbaut – das System ohne weiteres Zutun dauerhaft nachgiebig gestaltet.

Eine aufwendigere, aber dafür auch flexiblere Möglichkeit ist die Aktive Nachgiebigkeit (engl.: Active Compliance). Hierbei kann die Roboterhardware mechanisch völlig steif sein; die Nachgiebigkeit des Systems wird durch eine entsprechende Ansteuerung der Motoren simuliert. Dafür ist der Roboter mit Kraftsensorik ausgerüstet, die dem System konstant die auf den Roboter einwirkenden externen Kräfte meldet. Eine geschickte Regelung (Wikipedia) lässt den Roboter dann auf diese Kräfte auf die gleiche Art und Weise reagieren, wie es eine reale Feder tun würde: Bei kleiner Krafteinwirkung gibt der Roboter mit einer kleinen Bewegung nach, bei größerer Krafteinwirkung reagiert der Roboter mit einer deutlicheren Ausweichbewegung. Nicht, weil die Motoren nicht kräftig genug wären, den Kräften entgegenzuhalten, sondern weil dieses Verhalten den Eindruck eines weichen, nachgiebigen Systems erweckt und erwecken soll. Wie so eine Interaktion aussehen kann, zeigt das folgende Video:

Der iCub wird geführt und kann Objekte ertasten

Nachgiebigkeit ist dabei allerdings nicht allein für Interaktion eingesetzt; es ist auch ein enormer Sicherheitsaspekt. Ein Roboter, der mit seiner Umgebung (im schlimmsten Fall dem Menschen) kollidiert, weil er sie nicht richtig erkannt hat, richtet potentiell deutlich weniger Schaden an, wenn er nachgiebig ist; Schaden an sich und der Umwelt. Dies gilt für passive Nachgiebigkeit, genauso wie für aktive Nachgiebigkeit, wie das Deutsche Luft- und Raumfahrtzentrum im folgenden Video eindrücklich und mit offenbar ausreichend Vertrauen in die Technik beweist; am Ende des Videos mit Messer und einem menschlichen Probanden:

KUKA Lightweight Robot IV mit Kollisionserkennung

Plug and Pray

Arne am 23.10.2010 um 19:00 Uhr - zum Artikel

Im nächsten Monat, am 11. November, wird der Film Plug & Pray in die deutschen Kinos kommen. Ich hatte schon vor einigen Wochen das Vergnügen, den Film in trauter Runde während der iCub Summer School zu sehen, von der auch Szenen im Film zu sehen sind (unter anderem mit dem Slogan des Filmes „Dafür werden wir alle exkommuniziert“).

Der iCub im Film „Plug & Pray“Der iCub im Film „Plug & Pray“

Die Visionen, die heutzutage wegen fortschreitender Technik rund um die künstliche Intelligenz und die Robotik entstehen, sind längst auf dem Level der Science-Fiction des letzten Jahrhunderts angekommen. Auch wenn es technisch an so vielen Stellen noch hapert, sind diese Visionen auch in der Forschung präsent. So wird im Film zum Beispiel Hiroshi Ishiguro gezeigt, der sich einen Roboter nach seinem Abbild geschaffen hat, den Geminoid. Oder der iCub, der einem Kind nachgebildet ist und wie ein Kind lernen und seine Umgebung entdecken soll. Oder Ray Kurzweil, seit Jahren in den USA gefeierter Visionär, der seit einiger Zeit die baldige Verschmelzung von Mensch und Maschine und das menschgemachte Vorantreiben der Evolution predigt.

Plug & Pray ist ein Dokumentarfilm und stellt aktuelle Visionen, Über­zeu­gun­gen und den Alltag von Forschungsinstituten und Wis­sen­schaft­lern weltweit vor, die sich mit künstlicher Intelligenz und Robotik beschäftigen. Durch die schonungslose und gut recherchierte Dar­stellung der Szene und den zum Teil von den Wissenschaftlern leichtfertig vorgetragenen Fantasien ist der Film durchaus provokant und vielleicht sogar verängstigend. Er nimmt dabei allerdings seine dar­gestellten Protagonisten ernst, bleibt menschlich und liebevoll, ist niemals reißerisch und lässt Platz zum Nachdenken.

Anstrengend wird der Film dadurch nicht, dass er nie wirklich technisch wird und vor allem durch den wunderbaren, mittlerweile leider verstorbenen Joseph Weizenbaum, einem der Computerwissenschaftler des letzten Jahrhunderts, der mit Humor und scharfem Verstand den roten Faden des Filmes bildet. Immer wieder sind Interviewschnipsel und Alltagsszenen mit ihm eingestreut, die die zum Teil verstörenden Szenen einordnen und in der normalen Welt erden. Dass dies ausgerechnet einem Com­pu­ter­wis­sen­schaft­ler gelingt, der mit ELIZA (Wikipedia) einen der Meilensteine der künstlichen Intelligenz geschaffen hat, ist erstaunlich und beruhigend zugleich.

Gut recherchiert, nachdenklich, humorvoll und mit durchdachter Einordnung der gesellschaftlichen Relevanz ist Plug & Pray ein Film für Menschen vom Fach, Technik-Interessierte und jeden, den ein Zweig unserer Zukunft interessiert, der gerade rasant entsteht und der immer noch ziemlich un­be­re­chen­bar ist.

Trailer zum Film „Plug & Pray“

Anschauen dringend empfohlen.

PLUG & PRAY ist erschütternd und packend. Joseph Weizenbaum, mit der Gabe des Humors ausgestattet, verkörpert den gesunden Menschenverstand, während um ihn herum der Wahnsinn geadelt wird.“

Hans-Peter Dürr, Kernphysiker

[Linkdump] Autonomes Fahren und robotische Apotheken

Arne am 20.10.2010 um 16:35 Uhr - zum Artikel

Auch wenn ich die letzten Tage inaktiv war, waren es die deutschsprachigen Medien dankenswerterweise nicht und haben weiter über die Robotik berichtet; in diesen Tagen zudem auch vermehrt über Fahrerassistenz und autonomes Fahren. Hier ein paar Links zum autonomen Fahren, Roboter-Apotheken, technischen und ethischen Fragen …

Fahrerassistenz
Christoph Walter macht sich in der Märkischen Gedanken über die mit Fahrerassistenten zunehmend autonomer werdenenden Autos und welche Gefahren dies haben kann. „Sie bremsen, lenken, halten die Spur. Woran es den elektronischen Unfallverhütern mangelt, ist ein Verantwortungsbewusstsein.“
Verführer Fahrerassistent – Bloß nicht den Verstand verlieren
(Märkische Allgemeine, Christoph Walter, 15. Oktober 2010)

Roboter-Ethik
Interview mit Ron Arkin, Informatik-Professor und Robotiker am Georgia Institute of Technology, der sich unter anderem in den letzten Jahren in einem von der US Army finanzierten Projekt mit dem ethischem Verhalten von autonomen Systemen beschäftigt hat. Das Interview dreht sich um die Ethik von Militärrobotern und Kampfmaschinen. „Wir [haben] dann ein System entwickelt und getestet, das in der Lage sein sollte, sich am Kriegsvölkerrecht zu orientieren.“
Sind Roboter die besseren Soldaten?
(Telepolis, Hans-Arthur Marsiske, 18. Oktober 2010)

Robotertechnik
„Um wie menschliche Hände agieren zu können, müssen die Roboter Gegenstände abtasten, greifen, anheben und an anderer Stelle behutsam ablegen können“. In diesem Artikel von WELT Online geht es um neue Techniken der Robotik, um die künstlichen Gliedmaßen unter den immer komplexer werdenden Anforderungen zu bewegen: Interaktion, hohe Geschwindigkeit und Präzision.
Roboter decken den Tisch – und räumen wieder ab
(WELT Online, Stefanie Gaffron, 13. Oktober 2010)

Roboterapotheke
Golem schreibt zum Anlass einer in einem Krankenhaus in Schottland in Betrieb genommenen robotischen Apotheke über erste dortige Erfahrungen. „Dieses System erspare den Schwestern viel Zeitaufwand, sagte Helen Paterson, die stellvertretende Pflegeleiterin. Früher hätten sie ein Rezept per Hand ausfüllen und es dann in die Apotheke bringen müssen. Diese Zeit könnten sie jetzt den Patienten widmen.“
Weniger Kosten, weniger Fehler
(Golem, Werner Pluta, 19. Oktober 2010)

Fahrerloses Fahren
„Intelligente Autos werden die Straßen erobern“, schreibt Lisa Reggentin im Stern und bezieht sich damit auf die jüngsten Aktivitäten mit autonom fahrenden Autos von Google und der TU Braunschweig. 2030 soll dies dann Alltag auf den Straßen sein.
Die Zukunft der Roboter-Autos – Revolution auf der Straße
(Stern, Lisa Reggentin, 16. Oktober 2010)

Über Hinweise zu lesenswerten Artikeln freue ich mich jederzeit. Entweder per Kommentar oder per E-Mail an botzeit@ohmpage.org

[Linkdump] Militär, Ethik und Kooperation mit Robotern

Arne am 02.10.2010 um 13:17 Uhr - zum Artikel

Da ich es in den letzten Wochen wegen akuter Überarbeitung nicht zu enormer Aktivität geschafft habe und sich das vermutlich in den nächsten Tagen erst einmal nicht ändern wird, hier schon einmal ein paar Links der letzten Wochen. Über Roboter, die sich entschuldigen, selbständige Mondfähren und die Zusammenarbeit von Mensch und Roboter. Und nun geht's ab nach Oslo

Soziale Roboter
„Ich weiß, es ist schwierig mit mir zu arbeiten“, sagt der Roboter. Welche Fähigkeiten und Verhalten benötigen Roboter, damit Menschen sie als angenehme Gesellschaft empfinden und sich in Anwesenheit von Robotern wohlfühlen? Das "Exzellenzcluster Cognitive Interaction Technology" (Citec) in Bielefeld geht dieser Frage nach.
Ich weiß, es ist schwierig mit mir zu arbeiten
(Süddeutsche, Katrin Blawat, 18. August 2010)

Laufmaschine
Artikel über die Laufmaschine BioBiPed, die im Rahmen eines Forschungsprojekts des Lauflabors Jena und der TU Darmstadt wntwickelt wird. Das Außergewöhnliche: Der Roboter soll zuerst rennen und dann erst gehen lernen.
Eine Laufmaschine lernt gehen
(Heise Online, Hans-Arthur Marsiske, 20. August 2010)

Weltraum-Robotik
Bis 2018 will Weltraumorganisation ESA ein unbemanntes Raumschiff zum Mond fliegen lassen. „Die Mondfähre muss Hindernisse, steile Hänge und Krater beim Anflug erkennen, ihnen ausweichen und selbstständig einen geeigneten Landeplatz suchen können“, ein typischer Anwendungsfall der explorativen Robotik.
Europäische Roboter sollen 2018 auf Mond landen
(Spiegel Online, Cinthia Briseño, 16. September 2010)

Servicerobotik
„Milliardenmarkt Maschinenmensch“ – Das Handelsblatt beobachtet, dass Roboter aus den Werkshalle, also dem industriellen Umfeld, mehr und mehr in den Alltag wandern. Ob in der Medizintechnik, zur Pflege oder als Staubsauger- und Spielroboter.
Roboter laufen aus den Werkshallen
(Handelsblatt, Martin Murphy und Hans Schürmann, 29. September 2010)

Roboter-Ethik
„Roboter sollen nicht töten dürfen“ – Tina Klopp schreibt über die Fiktion eines bloodless war, eines Krieges ohne Verluste, und von der Forderungen des Ethikers Rob Sparrow nach einem Menschenrecht, nicht von Robotern getötet zu werden.
Roboter sollen nicht töten dürfen
(ZEIT Online, Tina Klopp, 27. September 2010)

Roboter als Mitarbeiter
Der Industrieroboterbauer Reis Robotics will zusammen mit fünf Partnern aus Industrie und Forschung in den nächsten drei Jahren daran arbeiten, Roboter ohne räumliche Trennung mit Menschen zusammenarbeiten zu lassen. Eine Aufgabe, die wegen der Kraft und des Gewichts von Robotern dringend Sicherheitsfragen aufwirft.
Roboter sollen Hand in Hand mit Menschen arbeiten
(Main-Netz, Nina-Anna Beckmann, 29. September 2010)

Über Hinweise zu lesenswerten Artikeln freue ich mich jederzeit. Entweder per Kommentar oder per E-Mail an botzeit@ohmpage.org

Das Antriebssystem des europäischen Marsrovers

Arne am 26.08.2010 um 10:24 Uhr - zum Artikel

Raumfahrer.net fragt bei der ESA, der Europäischen Weltraumorganisation, und der Planetaren Explorationsgruppe im Institut für Robotik und Mechatronik im DLR nach, was die Europäer bei ihrer Version des Marsrovers besser machen als die NASA: Das Antriebssystem des ExoMars-Rovers.